Durum wheat is very susceptible to Fusarium head blight (FHB) caused by the fungus *Fusarium graminearum* Schwabe (telomorph *Gibberella zeae* (Schw.) Petch. Fungicides may reduce the disease, but the most environmentally safe and economical way to control the disease is with genetic resistance. Breeding FHB resistance is a major strategy for reducing the impact of FHB on durum wheat. However, lack of good resistance resources in durum wheat has hindered the development of FHB resistant durum wheat varieties. Although the recently released cultivars Divide (2005), Alkabo (2005), Grenora (2005), and Tioga (2010) have less disease severity and DON levels than the older cultivars, the level of resistance in these cultivars is much lower than that found in hexaploid wheat germplasm. Attempts to introduce resistance genes from FHB resistant hexaploid wheat varieties such as Sumai 3 and its derivatives have been challenging because of genetic linkage drag of undesirable traits and other complex issues. Therefore, identification of a high level of FHB resistance resources in durum wheat germplasm has become a number one priority. In the past years, approximately 8,000 durum accessions from worldwide collections have been screened for reactions to Fusarium head blight (FHB), but only a small number of accessions were found to be moderately resistant. Screening other durum sources for a higher level of resistance is needed. There are 15,000 accessions at ICARDA that should be screened for FHB resistance. To date we have screened 3,526 accessions from ICRADA in Nanjing, China and after several screening three accessions were identified to have less than 30% disease severity. In 2012, 1,000 accessions were screened in the Jiangsu Academy of Agricultural Sciences, Jiangsu, China. Of these, 327 accessions were selected to be tested in the spring 2013 greenhouse and FHB field screening nursery at Carrington, Langdon, and Prosper ND in summer 2013. Selected lines will haplotyped and crosses will be initiated with the novel sources of resistance. A new set of 1,000 accessions will be send to China for FHB evaluation in the 2013-14.

Our overall goal is to screen the ICARDA durum wheat germplasm in order to identify good resistance sources of durum wheat and ultimately introgress the resistance genes into the cultivated durum wheat varieties to reduce the threat of the FHB disease. Therefore, the specific objectives of this project are:

1) Screen diverse durum accessions from ICARDA for reaction to FHB in a FHB screening nursery located at Nanjing, China
2) Re-evaluate the accessions exhibiting high levels of resistance in the preliminary screening test in the greenhouse and field in North Dakota
3) Determine whether the new sources of resistance carry novel resistant loci by marker haplotyping for 3BS, 6B, 5A, and 3AS regions.
4) Pre-breeding: make crosses using the resistant lines and distribute them to durum wheat breeders.