USDA-ARS/
U.S. Wheat and Barley Scab Initiative
FY12 Final Performance Report
July 16, 2013

Cover Page

PI: Fred Kolb
Institution: University of Illinois
Address: Department of Crop Sciences
1102 S. Goodwin Ave.
Urbana, IL 60801
E-mail: f-kolb@illinois.edu
Phone: 217-333-9485
Fax: 217-333-9817
Fiscal Year: FY12
USDA-ARS Agreement ID: 59-0206-9-080
FY12 USDA-ARS Award Amount: $112,570

USWBSI Individual Project(s)

<table>
<thead>
<tr>
<th>USWBSI Research Category</th>
<th>Project Title</th>
<th>ARS Award Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDHR-NWW</td>
<td>Development of Scab Resistant Soft Red Winter Wheat Varieties.</td>
<td>$89,028</td>
</tr>
<tr>
<td>VDHR-NWW</td>
<td>Coordinated Evaluation of FHB Resistance of Advanced Soft Winter Wheat Lines and Cultivars.</td>
<td>$15,595</td>
</tr>
<tr>
<td>VDHR-NWW</td>
<td>Improved Breeding for FHB Resistance by Advanced Genetic and Phenotypic Characterization of Soft Winter Wheat.</td>
<td>$5,219</td>
</tr>
<tr>
<td>VDHR-NWW</td>
<td>Coordinated Evaluation and Utilization of Marker Assisted Selection.</td>
<td>$2,046</td>
</tr>
<tr>
<td>VDHR-NWW</td>
<td>Male Sterile Facilitated Recurrent Selection for FHB Resistance (MPI-5).</td>
<td>$682</td>
</tr>
<tr>
<td>Total ARS Award Amount</td>
<td>$112,570</td>
<td></td>
</tr>
</tbody>
</table>

Principal Investigator
Date

* MGMT – FHB Management
FSTU – Food Safety, Toxicology, & Utilization of Mycotoxin-contaminated Grain
GDER – Gene Discovery & Engineering Resistance
PBG – Pathogen Biology & Genetics
BAR-CP – Barley Coordinated Project
DUR-CP – Durum Coordinated Project
HWW-CP – Hard Winter Wheat Coordinated Project
VDHR – Variety Development & Uniform Nurseries – Sub categories are below:
 SPR – Spring Wheat Region
 NWW – Northern Soft Winter Wheat Region
 SWW – Southern Soft Red Winter Wheat Region
Project 1: Development of Scab Resistant Soft Red Winter Wheat Varieties.

1. What major problem or issue is being resolved relevant to Fusarium head blight (scab) and how are you resolving it?

The major issue is that producers need varieties with high levels of scab resistance. We are working on the development of high-yielding, well-adapted, scab resistant lines. As more lines with good scab resistance are identified we are using these parents in crosses, so that in many crosses both parents, or two parents out of three in a three-way cross, are scab resistant. We also believe that it is important to combine several types of resistance rather than rely solely on Type II resistance. We are addressing this by using the ISK index (0.3 x % incidence + 0.3 x % severity + 0.4 x % shriveled kernels) to select breeding lines with high levels of scab resistance. Development of varieties with low deoxynivalenol (DON) levels is also crucial; therefore, all breeding lines are evaluated each year for DON level.

2. List the most important accomplishment and its impact (i.e. how is it being used) to minimize the threat of Fusarium head blight or to reduce mycotoxins. Complete both sections (repeat sections for each major accomplishment):

Accomplishment (1):
Data on FHB resistance of varieties in the Illinois State Variety Trial in a FHB evaluation nursery were made available to producers. In 2010 we developed a new index that incorporates the severity, incidence and FDK % into a single number. Using this index we can adjust ratings to the same disease level for each season (50% ISK index). We are continuing to use this index which allows producers and others to compare the FHB resistance of varieties evaluated in different seasons.

Impact:
In order to use FHB resistance as a criterion in variety selection producers must have as much information as possible on FHB resistance. The FHB resistance data provide very useful information to Illinois seedsmen and producers and allows them to use FHB resistance as a criterion in variety selection. Producers and seedsmen have a three year summary of data of FHB resistance and DON level that can be used in decisions about what varieties to produce. The information on FHB resistance is available online at <http://vt.cropsci.illinois.edu/wheat.html>.

Accomplishment (2):
In 2012, about 460 breeding lines from the University of Illinois wheat breeding program were evaluated. Scab resistant lines were evaluated for many traits including grain yield, milling and baking quality, standability, and resistance to diseases. Although an FHB resistance evaluation nursery was planted, inoculated and misted, very low levels of FHB symptoms prevented the collection of useful data of FHB resistance in the nursery in 2012.

Impact:
Sustained annual selection for FHB resistance in the inoculated, misted field nursery has significant long-term impact by assuring that new varieties will be FHB resistant.
Constant selection for FHB resistance in the breeding program is essential in order to identify breeding lines with FHB resistance and also to discard FHB susceptible lines early so that resources are not wasted evaluating FHB susceptible lines. The constant selection pressure applied using evaluation in misted, inoculated nurseries is essential in reducing DON.

Accomplishment (3):
In 2012-13 we produced about 240 single crosses and about 200 three-way and four-way crosses were made involving FHB resistance sources. Marker assisted selection (MAS) was used for F1 enrichment for the 3BS FHB resistance locus in seven three-way populations and F2 enrichment for the 3BS resistance locus was done in 11 single-cross populations (MAS done in cooperation with Gina Brown-Guedira, USDA-ARS). About 24 F3 and F4 bulks were grown in the inoculated and mist-irrigated FHB nursery and heads were selected.

Impact:
The crosses of scab resistant parents by adapted high yielding parents will provide populations that can be used for development of scab resistant varieties. These crosses are the source of variability that will be used for future development of scab resistant soft red winter wheat varieties.

Accomplishment (4):
Soft red winter wheat breeding lines with a high level of FHB resistance (better than Ernie) with high yield potential were increased for potential release for licensing and potential commercial production.

Impact:
Lines that enter commercial production provide seedsmen and producers with additional FHB resistant varieties. The availability of improved varieties with FHB resistance provides additional choices for seedsmen and producers and contributes to an overall reduction in DON and decreased susceptibility to FHB. For the seed industry in this part of the Midwest, release of breeding lines for licensing results in breeding lines being grown on larger acreages than release as a named variety. Thus, licensing results in greater impact than release as a public variety because there is no marketing for a public variety.
Project 2: Coordinated Evaluation of FHB Resistance of Advanced Soft Winter Wheat Lines and Cultivars.

1. **What major problem or issue is being resolved relevant to Fusarium head blight (scab) and how are you resolving it?**

 Objectives: 1) Phenotype advanced breeding lines that are candidates for release: 2) place FHB and other agronomic, disease resistance, and quality data in database: 3) report on purification and seed increase of the best lines.

 Coordinated evaluation of breeding lines among the programs in the NWW provides all breeding programs in the CP with FHB resistance data from multiple locations in a single season. This coordinated evaluation of breeding material plays an important role in the identification of breeding lines with high levels of FHB resistance. Our objective is to cooperatively obtain information on breeding lines from various programs within the CP and the SWW CP to allow the breeders involved to make better decisions about which breeding lines to advance and release.

2. **List the most important accomplishment and its impact (i.e. how is it being used) to minimize the threat of Fusarium head blight or to reduce mycotoxins. Complete both sections (repeat sections for each major accomplishment):**

 Accomplishment:
 Lines from the Univ. of Illinois program were submitted for all of the cooperative nurseries, thus, breeding lines with FHB resistance were made available to other breeding programs for use as germplasm. Four University of Illinois breeding lines (out of four entries) were among the most FHB resistant lines in the 2012 NUWWN and six University of Illinois breeding lines (out of six entries) were among the most FHB resistant lines in the 2012 PNUWWN. All ten of these entries had low average DON levels. IL02-18228 was entered into the 2012 Uniform Southern Winter Wheat Scab Nursery, and this line was one of the most FHB resistant lines in the nursery based on several parameters. IL02-18228 ranked first (lowest FHB) for FHB Index, % FDK, ISK, and % DON.

 Impact:
 Exchange of FHB resistant breeding lines among programs is essential and will contribute to the development of FHB resistant varieties. Obtaining FHB resistance data for entries in the cooperative nurseries from many environments allow wheat breeders to make better selection decisions about what lines to advance for further evaluation. Breeding lines from the University of Illinois breeding program were made available to other breeding programs for use as parents if the breeders wish to use them.

(Form – FPR12)

1. **What major problem or issue is being resolved relevant to Fusarium head blight (scab) and how are you resolving it?**

The objective of this project is to develop populations, knowledge of the genetics of FHB resistance, and breeding methodologies for rapid improvement of FHB resistance in soft winter wheat (SWW). Genetics studies in SWW suggest that there are several unique sources of FHB resistance that are controlled by several QTL with moderate to small effects, thus complicating traditional MAS approaches. Consequently, recurrent selection is likely to be an effective breeding tool to accumulate favorable alleles. We propose to develop knowledge of the types of resistance, the genetics of this resistance, and efficient breeding methodologies for improving FHB resistance in SWW. Specifically, we will determine the genetic structure of FHB resistance in SWW, develop models to implement genomic selection (GS) for multiple FHB traits, and characterize RKI and RTA in SWW.

Our approach will be to phenotype and genotype a set of 70 elite SWW lines that have good FHB resistance and about 880 families derived from those elite lines. The population will be phenotyped for multiple FHB traits (INC, SEV, IND, FDK, DON) in field trials. The data will be used in an association analysis (AA) to determine the genetics of resistance in SWW to estimate the effect of QTL on multiple mechanisms of FHB resistance and the frequency of favorable alleles in the SWW. The data will also be used to develop a GS model that predicts the breeding value of individuals using estimated gene effects from the entire genome. The model can be used in subsequent selection cycles to choose superior parents with little or no phenotyping. Collectively, AA and GS will allow us to 1) select parents that are fixed for the same major genes, 2) design crosses that facilitate combining different genes and multiple mechanisms of FHB resistance, and 3) allow selection of superior individuals without phenotyping thereby reducing time per breeding cycle.

2. **List the most important accomplishment and its impact (i.e. how is it being used) to minimize the threat of Fusarium head blight or to reduce mycotoxins. Complete both sections (repeat sections for each major accomplishment):**

Accomplishment:
1. Ten elite lines were selected from the University of Illinois breeding program with strong FHB resistance derived primarily from native SWW sources.
2. About 137 inbred lines with varying levels of FHB resistance from multiple crosses involving the elite lines from above and parents with less FHB resistance were selected. There are 892 lines total from all of the programs involved.
3. The 70 elite lines (10 x 7 program) and 137 lines from the University of Illinois program were planted for phenotypic evaluation in the 2012-13. Incidence, severity, index, FDK, and DON data will be collected from the misted and spray inoculated FHB nursery. The set of 70 elite lines will be used to estimate environmental effects and to standardize data from the families tested at different locations.
Impact:
The data will be used in an Association Analysis to determine the genetics of multiple mechanisms of FHB resistance in soft winter wheat. The large population size will enable us to estimate effects of genes with moderate to large effect. The family structure of the population will allow us to use both population and family-based association analysis techniques. The association analysis will 1) be used to evaluate the importance of previously identified QTL in soft red winter wheat, 2) identify new QTL with pronounced effects over genetic backgrounds, 3) estimate correlation of QTL effects for multiple mechanisms of FHB resistance, 4) identify adapted germplasm with these QTL, and 5) design crosses to combine mechanisms of resistance.
3. **What major problem or issue is being resolved relevant to Fusarium head blight (scab) and how are you resolving it?**

The objectives of this project are to 1) evaluate the effectiveness of use of FHB-resistance QTL in the NWW breeding programs through marker assisted selection (MAS); 2) quantify the effects of these QTL in reducing FHB and DON; and 3) measure their impact on other key traits such as yield and milling and baking quality.

4. **List the most important accomplishment and its impact (i.e. how is it being used) to minimize the threat of Fusarium head blight or to reduce mycotoxins. Complete both sections (repeat sections for each major accomplishment):**

Accomplishment:
Approximately 700-1000 partially inbred lines (RIL) from crosses with an array of parents homozygous for the resistance alleles at Fhb1 and other QTL were planted in breeding nurseries in KY, MO, IN, IL, MI, OH and NY. These lines were genotyped at Fhb1 and other resistance QTL at the USDA-ARS Eastern Regional Small Grains Genotyping Lab, Raleigh, NC. This material is being phenotyped for FHB traits, and in some cases yield and other agronomic traits in the individual Co-PI’s scab and yield nurseries. Based on genotypic and phenotypic data, a number of pairs of sister lines, homozygous for resistance and susceptibility alleles at each QTL were identified in each breeding program. Lines included in the study were planted in fall 2012 and FHB phenotyping, yield testing and milling and baking quality analysis occurred in the 2012-2013 season. Phenotyping will include standard FHB traits such as incidence, severity, FDK and DON.

Impact:
Outputs will include information on the effect of genetic background on QTL expression, sharing of lines to use as parents, and possible identification of lines worthy of joint germplasm and/or cultivar release. This project will result in immediate sharing of germplasm lines with QTL-derived resistance, often paired with native resistance. The extensive phenotyping and testing of these lines should expedite the release of those lines with variety release potential. Beyond individual institution releases, it is possible that the regional evaluation of these lines will identify some candidates for joint release as improved FHB-resistant, low DON varieties. Finally, this project will provide crucial information on the variability of QTL effects across genetic backgrounds. This will inform breeders in the soft winter wheat region on the probability of success of deploying these QTL in high yielding resistant, low DON varieties and thus make the breeding process more efficient.
FY12 (approx. May 12 – May 13) FY12 Final Performance Report
PI: Kolb, Fred
USDA-ARS Agreement #: 59-0206-9-080

Project 5: Male Sterile Facilitated Recurrent Selection for FHB Resistance (MPI-5).

1. What major problem or issue is being resolved relevant to Fusarium head blight (scab) and how are you resolving it?

The cooperative male sterile facilitated recurrent selection populations were developed as a way to generate FHB resistant breeding lines and facilitate the combination of FHB resistant genes from different sources. Recurrent selection has the objective of increasing the frequency of desirable alleles for one or more traits while maintaining a high level of variability in the population. Intermating among selected parents each generation allows recombination to occur thus combining genes from different sources. Male sterility provides a mechanism to easily allow recombination among FHB resistance sources. The dominant male-sterile gene was utilized to create recurrent selection populations segregating for FHB resistance because the progenies of the male-sterile plants always segregate 1:1 for sterility and a generation of selfing is not required to obtain true-breeding fertile genotypes. Our objective was to create four populations with FHB resistance adapted to different regions of the eastern U.S. Seed from the sterile heads were planted, and their sterile offspring were tagged for harvest to repeat the process. These populations were developed over several seasons at the Ohio Agricultural Research and Development Center in Wooster, Ohio. Breeding programs in the eastern U.S. contributed FHB resistant lines to serve as pollinators. Sterile plants were selected; those highly susceptible to FHB were discarded.

2. List the most important accomplishment and its impact (i.e. how is it being used) to minimize the threat of Fusarium head blight or to reduce mycotoxins. Complete both sections (repeat sections for each major accomplishment):

Accomplishment:
In 2012, the male-sterile population was grown in the field at Urbana, IL. Sterile heads were identified and tagged. Sterile heads that were very susceptible to Fusarium graminearum were removed. After being harvested and threshed, Fusarium damaged kernels were removed by aspiration, removing approximately 50% of the kernels. Remaining seed was space planted in the fall of 2012. A mixture of FHB resistant lines from the University of Illinois breeding program were planted as pollinators in adjacent rows. Additional cycles of mating and selection for FHB resistance will be carried out.

Impact: Male-sterile facilitated recurrent selections populations developed in the eastern soft wheat region can be used with local FHB resistant breeding lines as pollinators to further develop recurrent selection populations as a source of potential FHB resistant breeding lines with resistance from different sources.
Include below a list of all germplasm or cultivars released with full or partial support of the USWBSI. List the release notice or publication. Briefly describe the level of FHB resistance.

As reported last year eleven lines from the University of Illinois were released in 2012 for commercial production as licensed varieties. All lines released have FHB resistance equal to, or better than, Bess. For comparison IL02-18228 is a line that has been identified from numerous trials to have a high level of FHB resistance. No additional lines were released in the spring of 2013.

Performance of University of Illinois lines and checks averaged over years 2010 – 2011 in the Advanced trial.
All data are from Urbana, IL except yield data are from four locations in Illinois.

<table>
<thead>
<tr>
<th>Name</th>
<th>Yield (bu/A)</th>
<th>Test Weight (lbs/bu)</th>
<th>Height (in)</th>
<th>Heading Date (after 4/30)</th>
<th>Leaf Rust (0-9)</th>
<th>SBMV (0-9)</th>
<th>BYDV Stunting (%)</th>
<th>FHB Index (0-100)</th>
<th>Kernel Rating (%)</th>
<th>ISK (0-100)</th>
<th>DON (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL07-4415</td>
<td>74.6</td>
<td>55.5</td>
<td>38.0</td>
<td>9.0</td>
<td>4.3</td>
<td>6.5</td>
<td>4.5</td>
<td>11.4</td>
<td>13.3</td>
<td>28.6</td>
<td>3.4</td>
</tr>
<tr>
<td>IL07-8661</td>
<td>72.5</td>
<td>55.9</td>
<td>40.0</td>
<td>12.0</td>
<td>5.0</td>
<td>4.5</td>
<td>4.8</td>
<td>32.8</td>
<td>28.3</td>
<td>48.6</td>
<td>5.0</td>
</tr>
<tr>
<td>IL07-12948</td>
<td>75.1</td>
<td>58.4</td>
<td>40.7</td>
<td>10.5</td>
<td>3.7</td>
<td>2.0</td>
<td>4.0</td>
<td>26.8</td>
<td>26.7</td>
<td>46.5</td>
<td>6.4</td>
</tr>
<tr>
<td>IL07-16075</td>
<td>74.0</td>
<td>58.8</td>
<td>40.8</td>
<td>10.0</td>
<td>4.3</td>
<td>4.0</td>
<td>5.8</td>
<td>26.5</td>
<td>31.7</td>
<td>48.9</td>
<td>4.4</td>
</tr>
<tr>
<td>IL07-20728</td>
<td>79.6</td>
<td>60.0</td>
<td>39.7</td>
<td>10.3</td>
<td>2.3</td>
<td>4.0</td>
<td>4.0</td>
<td>21.4</td>
<td>25.0</td>
<td>43.7</td>
<td>3.2</td>
</tr>
<tr>
<td>IL07-24841</td>
<td>77.5</td>
<td>56.6</td>
<td>41.3</td>
<td>11.2</td>
<td>6.0</td>
<td>2.0</td>
<td>2.5</td>
<td>15.9</td>
<td>24.2</td>
<td>40.2</td>
<td>3.9</td>
</tr>
<tr>
<td>IL02-18228</td>
<td>69.5</td>
<td>58.7</td>
<td>41.2</td>
<td>10.5</td>
<td>6.7</td>
<td>2.5</td>
<td>4.0</td>
<td>9.1</td>
<td>16.7</td>
<td>29.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Bess</td>
<td>68.6</td>
<td>55.8</td>
<td>40.2</td>
<td>11.8</td>
<td>8.0</td>
<td>3.0</td>
<td>5.0</td>
<td>25.3</td>
<td>20.0</td>
<td>42.3</td>
<td>5.6</td>
</tr>
<tr>
<td>Pio 25R35</td>
<td>67.9</td>
<td>55.6</td>
<td>39.3</td>
<td>13.7</td>
<td>4.7</td>
<td>7.0</td>
<td>4.0</td>
<td>47.5</td>
<td>46.7</td>
<td>62.9</td>
<td>10.0</td>
</tr>
<tr>
<td>Pio 25R47</td>
<td>80.1</td>
<td>54.6</td>
<td>38.2</td>
<td>12.3</td>
<td>4.3</td>
<td>3.0</td>
<td>4.0</td>
<td>62.3</td>
<td>72.5</td>
<td>77.5</td>
<td>10.6</td>
</tr>
<tr>
<td>Pio 25R62</td>
<td>72.9</td>
<td>51.6</td>
<td>36.8</td>
<td>11.8</td>
<td>8.3</td>
<td>2.0</td>
<td>4.0</td>
<td>52.9</td>
<td>70.8</td>
<td>73.8</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Trial average 70.8 57.1 40.1 11.2 6.2 3.7 4.5 28.0 28.8 46.9 5.5
LSD0.05 5.9 1.3 1.9 1.4 1.3 2.7 2.2 17.1 13.5 10.9 2.6
CV (%) 10.1 1.5 3.2 8.1 13.2 37.1 25.3 40.6 31.1 15.5 27.0
No. of trials 7 2 2 2 1 2 2 2 2 2 2 2

(Form – FPR12)
Performance of University of Illinois lines and checks averaged over years 2009 - 2011 in the Advanced trial.,
All data are from Urbana, IL except yield data are from four locations in Illinois.

<table>
<thead>
<tr>
<th>Name</th>
<th>Yield (bu/A)</th>
<th>Yield Weight (lbs/bu)</th>
<th>Height (in)</th>
<th>Heading Date (after 4/30)</th>
<th>Leaf Rust (0-9)</th>
<th>SBMV (0-9)</th>
<th>BYDV stunting (%)</th>
<th>FHB Index (0-100)</th>
<th>Kernel Rating (%)</th>
<th>ISK Index (0-100)</th>
<th>DO N (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL05-4236</td>
<td>76.5</td>
<td>58.0</td>
<td>41.7</td>
<td>10.7</td>
<td>6.7</td>
<td>4.0</td>
<td>3.6</td>
<td>30.5</td>
<td>28.3</td>
<td>47.6</td>
<td>6.8</td>
</tr>
<tr>
<td>IL06-7550</td>
<td>70.5</td>
<td>55.6</td>
<td>40.2</td>
<td>12.9</td>
<td>8.7</td>
<td>5.3</td>
<td>5.2</td>
<td>21.8</td>
<td>25.6</td>
<td>41.2</td>
<td>7.5</td>
</tr>
<tr>
<td>IL06-13721</td>
<td>74.7</td>
<td>58.8</td>
<td>38.6</td>
<td>9.2</td>
<td>7.0</td>
<td>3.0</td>
<td>6.2</td>
<td>12.1</td>
<td>20.0</td>
<td>34.4</td>
<td>5.2</td>
</tr>
<tr>
<td>IL06-14262</td>
<td>74.8</td>
<td>57.4</td>
<td>40.4</td>
<td>13.3</td>
<td>6.7</td>
<td>3.5</td>
<td>5.6</td>
<td>16.3</td>
<td>14.8</td>
<td>35.0</td>
<td>5.9</td>
</tr>
<tr>
<td>IL06-23571</td>
<td>74.7</td>
<td>59.5</td>
<td>42.3</td>
<td>11.3</td>
<td>4.3</td>
<td>1.0</td>
<td>5.0</td>
<td>26.6</td>
<td>21.1</td>
<td>43.1</td>
<td>4.8</td>
</tr>
<tr>
<td>IL02-18228</td>
<td>71.1</td>
<td>59.6</td>
<td>41.1</td>
<td>11.3</td>
<td>6.7</td>
<td>2.5</td>
<td>4.0</td>
<td>7.6</td>
<td>13.3</td>
<td>25.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Bess</td>
<td>69.3</td>
<td>56.4</td>
<td>40.7</td>
<td>13.3</td>
<td>8.0</td>
<td>3.8</td>
<td>5.0</td>
<td>23.7</td>
<td>23.3</td>
<td>42.1</td>
<td>8.2</td>
</tr>
<tr>
<td>Pio 25R35</td>
<td>72.5</td>
<td>56.2</td>
<td>39.4</td>
<td>14.8</td>
<td>4.7</td>
<td>6.7</td>
<td>4.2</td>
<td>43.2</td>
<td>41.1</td>
<td>59.0</td>
<td>11.6</td>
</tr>
<tr>
<td>Pio 25R47</td>
<td>79.9</td>
<td>55.3</td>
<td>38.2</td>
<td>13.4</td>
<td>4.3</td>
<td>3.0</td>
<td>3.6</td>
<td>62.3</td>
<td>66.1</td>
<td>74.9</td>
<td>13.1</td>
</tr>
<tr>
<td>Pio 25R62</td>
<td>75.6</td>
<td>52.9</td>
<td>36.9</td>
<td>12.7</td>
<td>8.3</td>
<td>2.0</td>
<td>4.2</td>
<td>47.6</td>
<td>63.9</td>
<td>69.4</td>
<td>14.3</td>
</tr>
<tr>
<td>Trial average</td>
<td>72.4</td>
<td>57.8</td>
<td>39.8</td>
<td>12.3</td>
<td>6.2</td>
<td>3.9</td>
<td>4.8</td>
<td>29.4</td>
<td>28.5</td>
<td>46.8</td>
<td>6.9</td>
</tr>
<tr>
<td>LSD_{0.05}</td>
<td>5.3</td>
<td>1.2</td>
<td>1.8</td>
<td>1.3</td>
<td>1.3</td>
<td>2.8</td>
<td>2.0</td>
<td>17.2</td>
<td>13.9</td>
<td>11.6</td>
<td>3.1</td>
</tr>
<tr>
<td>CV (%)</td>
<td>9.2</td>
<td>1.4</td>
<td>3.1</td>
<td>6.9</td>
<td>13.2</td>
<td>34.7</td>
<td>21.6</td>
<td>38.9</td>
<td>32.6</td>
<td>16.5</td>
<td>27.9</td>
</tr>
<tr>
<td>No. of trials</td>
<td>11</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

SBMV: 0 = no symptoms, 9 = severe symptoms
Incidence = the percent of heads in a row with symptoms.
Severity = the percent of spikelets in a head with symptoms.
FHB Index = incidence x severity/100.
Kernel rating = the percent of shriveled seed.
ISK Index combines incidence, severity, and the % shriveled seed.
Varieties with greater resistance have lower numbers.
Include below a list of the publications, presentations, peer-reviewed articles, and non-peer reviewed articles written about your work that resulted from all of the projects included in the grant. Please reference each item using an accepted journal format. If you need more space, continue the list on the next page.

Abstracts:

