USDA-ARS/ U.S. Wheat and Barley Scab Initiative FY11 Final Performance Report July 13, 2012

Cover Page

PI:	Ivan Rayment	
Institution:	University of Wisconsin	
Address:	Department of Biochemistry	
	433 Babcock Drive	
	Madison, WI 53706-1544	
E-mail:	ivan_rayment@biochem.wisc.edu	
Phone:	608-262-0437	
Fax:	608-262-1319	
Fiscal Year:	FY11	
USDA-ARS Agreement ID:	59-0206-1-117	
USDA-ARS Agreement	Structural and Functional Studies of Trichothecene Biosynthetic	
Title:	Enzymes.	
FY11 USDA-ARS Award	\$ 48,228	
Amount:	\$ 40,220	

USWBSI Individual Project(s)

USWBSI Research Category*	Project Title	ARS Award Amount
PBG	Development and Testing of Improved Enzymes for Transgenic Control of FHB.	\$ 48,228
	Total ARS Award Amount	\$ 48,228

Principal Investigator

July 12, 2012

Date

^{*} MGMT – FHB Management

FSTU - Food Safety, Toxicology, & Utilization of Mycotoxin-contaminated Grain

GDER – Gene Discovery & Engineering Resistance

PBG – Pathogen Biology & Genetics

BAR-CP – Barley Coordinated Project

DUR-CP - Durum Coordinated Project

HWW-CP – Hard Winter Wheat Coordinated Project

VDHR - Variety Development & Uniform Nurseries - Sub categories are below:

SPR - Spring Wheat Region

NWW – Northern Soft Winter Wheat Region

SWW - Southern Soft Red Winter Wheat Region

FY11 (approx. May 11 – May 12)

PI: Rayment, Ivan

USDA-ARS Agreement #: 59-0206-1-117

Project 1: Development and Testing of Improved Enzymes for Transgenic Control of FHB.

1. What major problem or issue is being resolved relevant to Fusarium head blight (scab) and how are you resolving it?

This project is directed towards developing improved enzymes that can mitigate or inactivate the trichothecene mycotoxins. These enzymes will be introduced first into barley and then into wheat to demonstrate if they can reduce the impact of Fusarium Head Blight.

2. List the most important accomplishment and its impact (i.e. how is it being used) to minimize the threat of Fusarium head blight or to reduce mycotoxins. Complete both sections (repeat sections for each major accomplishment):

Accomplishment:

The major accomplishment is the development of a more stable version of trichothecene 3-*O*-acetylase (TRI101) which is known to be ~70 times more active towards DON than enzymes that have previously been introduced into wheat and barley. This enzyme is being transferred into barley for in vivo testing of its efficacy. In addition a screen for trichothecene biodegradative enzymes has been developed which is being used to identify bacterial enzymes that detoxify DON by deepoxidation to form deepoxy-4-deoxynivalenol.

Impact:

This approach may establish the feasibility of generating GM barley and wheat that are resistant to FHB

FY11 (approx. May 11 – May 12)

PI: Rayment, Ivan

USDA-ARS Agreement #: 59-0206-1-117

Include below a list of the publications, presentations, peer-reviewed articles, and non-peer reviewed articles written about your work that resulted from all of the projects included in the grant. Please reference each item using an accepted journal format. If you need more space, continue the list on the next page.

None