Cover Page

PI: Mohamed Mergoum
Institution: North Dakota State University
Address: Department of Plant Sciences
 Rm 166 Loftsgard Hall
 Fargo, ND 58105-5051
E-mail: Mohamed.Mergoum@ndsu.edu
Phone: 701-231-8478
Fax: 701-231-8474
Fiscal Year: FY11
USDA-ARS Agreement ID: 59-0206-9-066
USDA-ARS Agreement Title: Breeding Adapted Spring Wheat for Scab Resistance.
FY11 USDA-ARS Award Amount: $ 146,480

USWBSI Individual Project(s)

<table>
<thead>
<tr>
<th>USWBSI Research Category</th>
<th>Project Title</th>
<th>ARS Award Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDHR-SPR</td>
<td>Development of Hard Spring Wheat Cultivars Resistant Scab Disease.</td>
<td>$ 101,295</td>
</tr>
<tr>
<td>VDHR-SPR</td>
<td>Genetic Characterization of Fusarium Head Blight Resistance in Two Elite Spring Wheat Cultivars.</td>
<td>$ 45,185</td>
</tr>
</tbody>
</table>

Total ARS Award Amount $ 146,480

06/20/12

Principal Investigator Date

* MGMT – FHB Management
FSTU – Food Safety, Toxicology, & Utilization of Mycotoxin-contaminated Grain
GDER – Gene Discovery & Engineering Resistance
PBG – Pathogen Biology & Genetics
BAR-CP – Barley Coordinated Project
DUR-CP – Durum Coordinated Project
HWW-CP – Hard Winter Wheat Coordinated Project
VDHR – Variety Development & Uniform Nurseries – Sub categories are below:
 SPR – Spring Wheat Region
 NWW – Northern Soft Winter Wheat Region
 SWW – Southern Soft Red Winter Wheat Region
FY11 (approx. May 11 – May 12) FY11 Final Performance Report
PI: Mergoum, Mohamed
USDA-ARS Agreement #: 59-0206-9-066

Project 1: Development of Hard Spring Wheat Cultivars Resistant Scab Disease.

1. What major problem or issue is being resolved relevant to Fusarium head blight (scab) and how are you resolving it?

Scab or Fusarium head bight (FHB) remains the major threat for wheat production and industry in the Northern Central Plains of the US in general, and in North Dakota (ND) in particular where the hard red spring wheat (HRSW) is leading crop in the State and US. The disease is complex and causes significant reduction in grain yield and impacts negatively the wheat quality. In the past two decades, FHB disease had tremendous implications on wheat on ND HRSW producers; end-users; and export market. The NDSU HRSW wheat breeding program is addressing this problem by the development of elite and adapted genotypes/lines/cultivars and breeding populations that incorporate diverse genetic resistance with desired agronomic and quality traits. The strategy used is based on incorporating genes of resistance into elite germplasm and pyramiding several types of genetic resistance to the disease from diverse sources using classical breeding methods and appropriate novel technologies such as selected molecular markers. Based on our accomplishments and impact (Listed in this and previous reports), we strongly believe that genetic resistance provides a strategic long-term, economically, and environmentally sound solution to this problem. In 2011-2012 growing cycle, our efforts have continued to develop elite HRSW germplasm and cultivars that are adapted to ND in particular, and spring wheat region, in general. Significant accomplishments have been achieved and are listed in this report.

2. List the most important accomplishment and its impact (i.e. how is it being used) to minimize the threat of Fusarium head blight or to reduce mycotoxins. Complete both sections (repeat sections for each major accomplishment):

Accomplishment:

In the 2011-2012 cycle, we have accomplished in the NDSU HRSW breeding program significant progress in breeding HRSW against FHB disease. These are illustrated in the release and pre-release of many HRSW cultivars and elite germplasm that are hallmark of wheat production in the spring wheat region in particular and in for the USA and the wheat breeding program worldwide. The cultivars we released are grown on large scale in ND and the Northern plains (ND, MN, SD, and MT) generating hundreds of millions of dollars of benefits for the growers, the industry and export market. These cultivars are the following:

New released (potential releases) cultivars/germplasm:

- **ND818 (potential name ‘Elgin’)** is a HRSW line with wide adaptation allowing it to compete very well with most dominant cultivars in the State, Glenn and Faller. In addition, its quality attributes are much improved compared to Faller, the dominant cultivars in Eastern ND and Western MN, the FHB prone zone. ND818 is moderate resistant/susceptible to FHB, similar to Steele-ND which traces it FHB resistance to
T. dicoccoides, a wide relative of wheat. ND818 was released by the release committee and upon approval by the Director of NDSU-AES, this cultivar will be released in 2013. In this case, ND818 would be released under the name of ‘Elgin’

- ‘Velva’ (Released in 2012): it is relatively, medium susceptible to scab compared to susceptible checks. Velva was not selected from introduced FHB germplasm sources of resistances such as Chinese Sumai3. It I was selected from a cross involving cultivars which may carry some indigenous FHB resistance. It has general adaptation but better fit to Central and Western ND environments. It has excelled performance, particularly where Reeder is grown. Overall, Velva has high grain yield, higher than most cultivars adapted to Central and Western region. It is a Semi-dwarf line with medium late maturity, similar to Reeder and Faller; and medium to strong straw strength similar to Reeder. Protein of Velva is good, similar to Reeder with average milling properties. Similarly, Velva has Good baking properties similar or slightly better than Reeder. Test weight is also average similar to Reeder. Velva has an excellent leaf diseases package better than Reeder. It is resistant or medium resistant to leaf and stem rusts; resistant to septorias; and resistant to races 2 and 3 of tan spot, but Velva is susceptible to bacterial leaf streak.

- ‘Prosper’ (released in 2011): Prosper was selected from a cross involving ND2710 which is a derivative from Sumai3. Hence it has medium resistance to FHB is based on fhb1 from Sumai3 similar to Faller released in 2007. Prosper has very high grain yield better or at least equal to Faller. It performs relatively well in The Eastern of ND and Western MN environments. It has medium straw strength. Prosper is a conventional to semi-dwarf height variety, with an early to medium early maturity. Prosper average protein content and test weight, similar to Faller, and high flour extraction. Overall, it has good milling and baking qualities similar to Faller. Prosper possesses an excellent diseases resistances package. It is resistant to Leaf and stem rusts. Given that Prosper was targeted to high rainfall areas of ND and Western MN, it was also jointly released by North Dakota State University and the Minnesota Agricultural Experiment Station.

- In 2012, ND 803 Spring Wheat Germplasm Combining Scab and Leaf Diseases with High Agronomic and Quality Traits was submitted for the Journal of Plant Registration as a germplasm for FHB and other agronomic traits.

Previous released cultivars:

- The 2009 release cultivar ‘Barlow’. Barlow is also a derivative cultivar of Sumai3. Hence it has medium resistance to FHB is based on fhb1 from Sumai3. The level of resistance of Barlow is close to Alsen and Faller, very popular HRSW cultivars in the spring region. However, Barlow has high yield than Alsen and Glenn, the number one cultivar in the spring region, very good leaf disease package compared to Glenn, and excellent quality attributes. Barlow has wide adaptation. It performs very well in all ND environments, including the Western dry land regions of ND. In 2011, Barlow was the third leading cultivar –after Glenn and Faller, both NDSU cultivars released by this
program- in ND with 8.5% of about 6.4 million wheat acres in ND. Barlow was also
grown in neighboring states of MN, SD and MT.

The 2007 release ‘Faller’ was the second leading cultivar in wheat acreages after Glenn
in ND since 2009 with 11.4% in 2011. Faller was grown on 17 and 15% of ND wheat
acreages in 2009 and 2010, respectively. Faller is also the leading cultivar in MN since
2009. Faller occupied 21 and 30% of MN wheat acreages in 2009 and 2010, respectively.
Faller is a derivative cultivar of Sumai3. Hence it has medium resistance to FHB, similar
to Alsen. Faller is a very high yielding cultivar with very good leaf disease package
compared to Glenn and medium protein content. Faller is recommended for high rainfall
and FHB prone spring wheat regions. It is the first NDSU cultivar with such high yield
potential. Faller was also grown in other neighboring states of SD and MT.

‘Glenn’ released in 2005 is has been the LEADING HRSW cultivar in the spring wheat
region replacing since 2008. In 2011, Glenn was covering about 1.2 million acres in ND
only (18.1% of total ND wheat). Glenn replaced Alsen that dominated the wheat
production for 5 years since 2003. Glenn with parentages involving both Sumai-3 and
Steele-ND has higher FHB resistance level (better than Alsen variety). In addition Glenn
has excellent quality attributes allowing it to be the quality standard by the Wheat Quality
Council and the industry in the USA. Based on the US-Wheat Associates survey (OVA),
Glenn is now the most preferred cultivar by the wheat importers worldwide. Glenn is
expected to dominate the wheat production for some years. In 2009, Glenn was grown on
25% (about 1.7 million acres) of ND wheat acreages. Glenn was also grown in
neighboring states of MN, SD and MT.

Many other NDSU releases such as the 2004 HRSW release ‘Steele-ND’ and ‘Howard’
released in 2006, both have good FHB resistance level different from Alsen (Sumai3) are
grown on substantial acreages in the spring wheat region.

Previous released germplasm, RIL population:

In 2009, we have released the RILs population ND735/Steele-ND with resistance to leaf
spotting diseases and scab.

Previously, several lines were released as germplasm. These include ND 756, ND 2710,
ND 744, and ND 751 (See Crop Sciences).

Impact:

Hundreds of millions of dollars are yearly generated by the NDSU wheat cultivars to the
spring wheat growers and industry in the USA and by the wheat export market sector.
Following are some facts that detail this situation:

In average, about 50-60% (3.3-4 million acres) of ND spring wheat acreages are grown to
NDSU wheat cultivars. This demonstrates the good performance and adaptation of our
cultivars to meet wheat growers and end-users. Among these common grown NDSU cultivars, Glenn, Faller, Barlow, Steele-ND, and Howard. All of them have some level of resistance to FHB and excellent agronomic/quality traits contribute. These and other NDSU cultivars have occupied more than 55% (3.5 million acres) of wheat grown in ND in 2011. These figures show that the impact on wheat business (growers, industry and export market) of the FHB resistant HRSW cultivars developed by this program using partly, the USWBSI initiative funds is phenomenal.

* In addition, the NDSU HRSW cultivars are also grown and leading in some neighboring states (MN, SD, and MT) where spring wheat is a major crop and FHB is a threat. Since 2009, Faller was the leading wheat cultivar in MN with 21.3 and 30% of wheat acreages in 2009 and 2010, respectively. Other cultivars such as Glenn, Steele-ND, and Howard are also popular in MN, SD, and MT as well. This is an important impact that should be factored in as well.

* Releasing superior and very high quality HRSW cultivars with improved FHB resistance has allowed the spring wheat growers to be competitive in the wheat market at the national and international levels.

* The HRSW germplasm and cultivars with FHB resistance that we have released are well known and extensively used in the breeding program nationally and worldwide. Our HRSW breeding program continues to be the ‘Center of excellence’ for wheat germplasm with high quality and good sources of FHB resistance.

Project 2: Genetic Characterization of Fusarium Head Blight Resistance in Two Elite Spring Wheat Cultivars.

1. **What major problem or issue is being resolved relevant to Fusarium head blight (scab) and how are you resolving it?**

Decades of breeding of HRSW for FHB resistance at NDSU, U of MN, and SDSU and other breeding programs in the spring region, many cultivars with FHB resistance have been released and are being grown on a large scale, particularly, NDSU cultivars, replacing the most susceptible cultivars. Most of these cultivars trace their resistances to the Chinese sources, particularly Sumai3. This is true for cultivars such as Alsen and supposedly Glenn, both NDSU releases that have dominated the spring wheat area since 2002. However, recently we have collected some data showing that Glenn does not show the presence of the closest markers to the main FHB resistance gene Fhb1 from Sumai 3. These results have been confirmed by many labs including U of MN (USDA-ARS, Fargo,…etc). All these results show that haplotyping Glenn is consistent with our data that Glenn may not have *Fhb1* markers as we previously believed based on Glenn pedigree. This has raised a major question among us, breeders involved in this project. **Does Glenn have a new combination of FHB resistant genes from it diverse pedigree tracing to Chinese, US, and wild type wheat origin? or have breeders at NDSU who developed this cultivar have broken the linkage**
between the Fhb1 and the new flanking markers? To confirm either case, more research is needed to elucidate this assumption. Similarly, among the most popular grown cultivar developed by NDSU, Parshall was grown on significant acreages in the spring wheat region for many years because it has showed consistently good tolerance to FHB. Parshall parentage do not trace to any exotic origin such as Chinese germplasm. We believe Parshall has an indigenous source of resistance that may of great interest to the wheat breeders. To address both topics indicated above and to clarify the genetics of FHB resistance of both Glenn and Parshall, several Recombinant Inbred Lines (RILs) populations involving these two sources or resistances and susceptible parents from MN (MN00261-4), SD (SD3870), and ND (Reeder) were developed. In this study we will use a couple RIL populations with Glenn and Parshall to map the FHB resistance and use other RIL populations for validating our results.

2. List the most important accomplishment and its impact (i.e. how is it being used) to minimize the threat of Fusarium head blight or to reduce mycotoxins. Complete both sections (repeat sections for each major accomplishment):

Accomplishment:

A graduate student, Mr. Ahmed El Doliefy was hired to work on this project in 2010. He has been conducting research activities related to this project. Particularly, he has been doing field evaluations for FHB reaction of the RILs and their parents along with the checks in ND and lab. Work to map the FHB resistance in Glenn and Parshall will start in Fall 2012. Drs. J. Anderson and K. Glover are responsible for field evaluations in MN and SD, respectively. Dr. S. Chao, in the USDA-ARS lab in Fargo, will provide Mr. Ahmed El Doliefy the facilities and guidance in the mapping phase, particularly to saturate the genomic regions of interest that determined by the Diversity Array Technology (DArT, Australia) data analysis. In 2011, significant results related to FHB field evaluations and DNA samples preparation for DArT analysis were achieved. Following are the achievements in 2011.

Field evaluations:

In summer 2011, the RILs populations, their parents, and appropriate susceptible and most resistant FHB checks were included in four experiments in this project. The experiments were planted in three to four FHB field nurseries located in the three states, ND, MN, and SD in summers of 2011. Data on some agronomic traits including heading height and FHB diseases notes including incidence and severity visually estimated were recorded for each plot approximately 21 days after anthesis. Plots were be harvested to determine DON levels in the lab. However, at Prosper, ND severe floods were have caused some severe effects on many nurseries including FHB nursery.

Lab. Work and DNA extraction:

DNA has been extracted (by Ahmed) from the RILS of all populations, their parents, and checks. This DNA was sent to the DArT for mapping the most known genes on wheat
genomes. Therefore, the DNA extraction and its quality should meet the DArT standards. The data generated by DArT was performed in 2011 and is now available to be used by Mr. Ahmed El Doliefy with the help of Dr Chao to (1) generate a basic map and identify important QTL regions, (2) augment the identified QTL regions with microsatellite markers (SSR) that show polymorphism between parents; and (3) subsequently, generate linkage maps. This work will start in Fall 2012 to included phenotypic data that will be generated in this coming 2012 field FHB nurseries. However, we believe that mapping FHB genes in these populations would be more accurate and useful using SNPs panel that is now available at the USDA-ARS genotyping Center at Fargo. Hence, we are looking for funding (about $15,000) to conduct this additional operation.

Impact:

This research has a substantial potential impact on the breeding for FHB resistance, particularly, if Glenn resistance to FHB is not based on the Fhb1 gene. This would be breakthrough for all wheat breeding programs dealing with FHB as a major threat for wheat. Similarly, new genes for resistance to FHB in wheat are warranted as the arsenal of genes available to breeders is very limited. Parshall can be a good source of novel FHB resistance genes that could be mined by breeders. In both cases, the direct impact on wheat production at the state and regional (northern Great Plains), and national levels is tremendous. In the past years, NDSU HRSW cultivars with FHB resistance have been dominating the spring wheat growing region in the US. Recently released NDSU cultivars Barlow, Faller, Glenn, Steele-ND and Howard are major HRSW cultivars in the US spring wheat region. However, new and novel FHB resistant genes are needed to enhance the resistance of the most common and available cultivars.

Include below a list of all germplasm or cultivars released with full or partial support of the USWBSI. List the release notice or publication. Briefly describe the level of FHB resistance.

Recent and near future cultivars/germplasm release:

- **ND818 (potential name ‘Elgin’)**: is a HRSW line with wide adaptation allowing it to compete very well with most dominant cultivars in the State, Glenn and Faller. In addition, its quality attributes are much improved compared to Faller, the dominant cultivars in Eastern ND and Western MN, the FHB prone zone. ND818 is moderate resistant/susceptible to FHB, similar to Steele-ND which traces it FHB resistance to *T. dicoccoides*, a wide relative of wheat. ND818 was released by the release committee and upon approval by the Director of NDSU-AES, this cultivar will be released in 2013. In this case, ND818 would be released under the name of ‘Elgin’.

- **‘Velva’** (Released in 2012): it is relatively, medium susceptible to scab compared to susceptible checks. Velva was not selected from introduced FHB germplasm sources.
of resistances such as Chinese Sumai3. It was selected from a cross involving cultivars which may carry some indigenous FHB resistance. It has general adaptation but better fit to Central and Western ND environments. It has excelled performance, particularly where Reeder is grown. Overall, Velva has high grain yield, higher than most cultivars adapted to Central and Western region. Velva has Good baking properties similar or slightly better than Reeder. It is resistant or medium resistant to leaf and stem rusts; resistant to septorias; and resistant to races 2 and 3 of tan spot, but Velva is susceptible to bacterial leaf streak.

- **Prosper** (released in 2011): Prosper was selected from a cross involving ND2710 which is a derivative from Sumai3. Hence it has medium resistance to FHB is based on fhb1 from Sumai3 similar to Faller released in 2007. Prosper has very high grain yield better or at least equal to Faller. It performs relatively well in The Eastern of ND and Western MN environments. Overall, it has good milling and baking qualities similar to Faller. Prosper possesses an excellent diseases resistances package. It is resistant to Leaf and stem rusts. Given that Prosper was targeted to high rainfall areas of ND and Western MN, it was also jointly released by North Dakota State University and the Minnesota Agricultural Experiment Station.

- In 2012, ND 803 Spring Wheat Germplasm Combining Scab and Leaf Diseases with High Agronomic and Quality Traits was submitted for the Journal of Plant Registration as a germplasm for FHB and other agronomic traits.

Previous released cultivars:

- The 2009 release cultivar ‘Barlow’. Barlow is also a derivative cultivar of Sumai3. Hence it has medium resistance to FHB is based on fhb1 from Sumai3. The level of resistance of Barlow is close to Alsen and Faller, very popular HRSW cultivars in the spring region. However, Barlow has high yield than Alsen and Glenn, the number one cultivar in the spring region, very good leaf disease package compared to Glenn, and excellent quality attributes. Barlow has wide adaptation. It performs very well in all ND environments, including the Western dry land regions of ND. In 2011, Barlow was the third leading cultivar –after Glenn and Faller, both NDSU cultivars released by this program- in ND with 8.5% of about 6.4 million wheat acres in ND. Barlow was also grown in neighboring states of MN, SD and MT.

- The 2007 release ‘Faller’ was the second leading cultivar in wheat acreages after Glenn in ND since 2009 with 11.4% in 2011. Faller was grown on 17 and 15% of ND wheat acreages in 2009 and 2010, respectively. Faller is also the leading cultivar in MN since 2009. Faller occupied 21 and 30% of MN wheat acreages in 2009 and 2010, respectively. Faller is a derivative cultivar of Sumai3. Hence it has medium resistance to FHB, similar to Alsen. Faller is a very high yielding cultivar with very good leaf disease package compared to Glenn and medium protein content. Faller is recommended for high rainfall and FHB prone spring wheat regions. It is the first NDSU cultivar with such high yield potential. Faller was also grown in other neighboring states of SD and MT.
‘Glenn’ released in 2005 is has been the LEADING HRSW cultivar in the spring wheat region replacing since 2008. In 2011, Glenn was covering about 1.2 million acres in ND only (18.1% of total ND wheat). Glenn replaced Alsen that dominated the wheat production for 5 years since 2003. Glenn with parentages involving both Sumai-3 and Steele-ND has higher FHB resistance level (better than Alsen variety). In addition Glenn has excellent quality attributes allowing it to be the quality standard by the Wheat Quality Council and the industry in the USA. Based on the US-Wheat Associates survey (OVA), Glenn is now the most preferred cultivar by the wheat importers worldwide. Glenn is expected to dominate the wheat production for some years. In 2009, Glenn was grown on 25% (about 1.7 million acres) of ND wheat acreages. Glenn was also grown in neighboring states of MN, SD and MT.

Many other NDSU releases such as the 2004 HRSW release ‘Steele-ND’ and ‘Howard’ released in 2006, both have good FHB resistance level different from Alsen (Sumai3) are grown on substantial acreages in the spring wheat region.

Previous released germplasm, RIL population:

In 2009, we have released the RILs population ND735/Steele-ND with resistance to leaf spotting diseases and scab.

Previously, several lines were released as germplasm. These include ND 756, ND 2710, ND 744, and ND 751 (See Crop Sciences).

Publications of cultivars and germplasm:

Include below a list of the publications, presentations, peer-reviewed articles, and non-peer reviewed articles written about your work that resulted from all of the projects included in the grant. Please reference each item using an accepted journal format. If you need more space, continue the list on the next page.

