USWBSI Individual Project(s)

<table>
<thead>
<tr>
<th>USWBSI Research Category</th>
<th>Project Title</th>
<th>ARS Award Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDHR-NWW</td>
<td>Development of Scab Resistant Soft Red Winter Wheat Varieties.</td>
<td>$ 76,098</td>
</tr>
<tr>
<td>VDHR-NWW</td>
<td>Coordinated Evaluation and Utilization of Marker Assisted Selection.</td>
<td>$ 8,405</td>
</tr>
<tr>
<td>VDHR-NWW</td>
<td>Coordinated Evaluation of FHB Resistance of Advanced Soft Winter Lines and Cultivars.</td>
<td>$ 17,469</td>
</tr>
<tr>
<td>VDHR-NWW</td>
<td>Improved Breeding for FHB Resistance by Advanced Genetic and Phenotypic Characterization of Soft Winter Wheat.</td>
<td>$ 10,879</td>
</tr>
<tr>
<td></td>
<td>Total ARS Award Amount</td>
<td>$ 112,851</td>
</tr>
</tbody>
</table>

* MGMT – FHB Management
FSTU – Food Safety, Toxicology, & Utilization of Mycotoxin-contaminated Grain
GDER – Gene Discovery & Engineering Resistance
PBG – Pathogen Biology & Genetics
BAR-CP – Barley Coordinated Project
DUR-CP – Durum Coordinated Project
HWW-CP – Hard Winter Wheat Coordinated Project
VDHR – Variety Development & Uniform Nurseries – Sub categories are below:
 - SPR – Spring Wheat Region
 - NWW – Northern Soft Winter Wheat Region
 - SWW – Southern Soft Red Winter Wheat Region
Project 1: Development of Scab Resistant Soft Red Winter Wheat Varieties.

1. What major problem or issue is being resolved relevant to Fusarium head blight (scab) and how are you resolving it?

 The major issue is that producers need varieties with high levels of scab resistance. We are working on the development of high-yielding, well-adapted, scab resistant lines. As more lines with good scab resistance are identified we are using these parents in crosses, so that in many crosses both parents, or two parents out of three in a three-way cross, are scab resistant. We also believe that it is important to combine several types of resistance rather than rely solely on Type II resistance. We are addressing this by using the ISK index (0.3 x % incidence + 0.3 x % severity + 0.4 x % shriveled kernels) to select breeding lines with high levels of scab resistance. Development of varieties with low deoxynivalenol (DON) levels is also crucial; therefore, all breeding lines are evaluated each year for DON level.

2. List the most important accomplishment and its impact (i.e. how is it being used) to minimize the threat of Fusarium head blight or to reduce mycotoxins. Complete both sections (repeat sections for each major accomplishment):

 Accomplishment: Eighty-four varieties from the Illinois State Variety Trial were evaluated for FHB resistance in a FHB evaluation nursery, and data were made available to producers. In 2010 we developed a new index that incorporates the severity, incidence and FDK % into a single number. Using this index we can adjust ratings to the same disease level for each season (50% ISK index). We are continuing to use this index which allows producers and others to compare the FHB resistance of varieties evaluated in different seasons.

 Impact: In order to use FHB resistance as a criterion in variety selection producers must have as much information as possible on FHB resistance. The FHB resistance data provide very useful information to Illinois seedsmen and producers and allows them to use FHB resistance as a criterion in variety selection. Producers and seedsmen have a three year summary of data of FHB resistance and DON level that can be used in decisions about what varieties to produce. The information on FHB resistance is available online at <http://vt.cropsci.illinois.edu/wheat.html>.

 Accomplishment: In 2011, about 410 breeding lines from the University of Illinois wheat breeding program were evaluated in the misted, inoculated scab evaluation field nursery. Scab resistant lines were evaluated for many additional traits including grain yield, milling and baking quality, standability, and resistance to other diseases.

 Impact: Sustained annual selection for FHB resistance in the inoculated, misted field nursery has significant long-term impact by assuring that new varieties will be FHB resistant. Constant selection for FHB resistance in the breeding program is essential in order to identify breeding lines with FHB resistance and also to discard FHB susceptible lines early so that resources are not wasted evaluating FHB susceptible lines. The constant selection pressure applied using evaluation in misted, inoculated nurseries is essential in reducing DON.
Accomplishment: In 2011, 1915 wheat samples were sent to the lab at the University of Minnesota for deoxynivalenol (DON) analysis.

Impact: DON evaluation is an essential component of FHB resistance evaluation because new varieties must have not just lower FHB field symptoms but also reduced DON content. This is information that is primarily useful to the wheat breeder, but information on low DON producing varieties can also be used by the producer in variety selection.

Accomplishment: In 2011-12 we produced about 200 single crosses and about 275 three-way and four-way crosses were made involving FHB resistance sources. Marker assisted selection (MAS) was used for F1 enrichment for the 3BS FHB resistance locus in nine three-way population and F2 enrichment for the 3BS resistance locus was done in 13 single-cross populations (MAS done in cooperation with Gina Brown-Guedira, USDA-ARS). About 32 F3 and F4 bulks were grown in the inoculated and mist-irrigated FHB nursery and heads were selected under heavy FHB disease pressure.

Impact: The crosses of scab resistant parents by adapted high yielding parents will provide populations that can be used for development of scab resistant varieties. These crosses are the source of variability that will be used for future development of scab resistant soft red winter wheat varieties.

Accomplishment: Soft red winter wheat breeding lines with a high level of FHB resistance (better than Ernie) with high yield potential were increased for potential release for licensing and potential commercial production.

Impact: Lines that enter commercial production provide seedsmen and producers with additional FHB resistant varieties. The availability of improved varieties with FHB resistance provides additional choices for seedsmen and producers and contributes to an overall reduction in DON and decreased susceptibility to FHB. For the seed industry in this part of the Midwest, release of breeding lines for licensing results in breeding lines being grown on larger acreages than release as a named variety. Thus, licensing results in greater impact than release as a public variety because there is no marketing for a public variety.
Project 2: Coordinated Evaluation and Utilization of Marker Assisted Selection.

1. What major problem or issue is being resolved relevant to Fusarium head blight (scab) and how are you resolving it?

The objectives of this project are to 1) evaluate the effectiveness of use of FHB-resistance QTL in the NWW breeding programs through marker assisted selection (MAS); 2) quantify the effects of these QTL in reducing FHB and DON; and 3) measure their impact on other key traits such as yield and milling and baking quality.

2. List the most important accomplishment and its impact (i.e. how is it being used) to minimize the threat of Fusarium head blight or to reduce mycotoxins. Complete both sections (repeat sections for each major accomplishment):

Accomplishment: Approximately 700-1000 partially inbred lines (RIL) from crosses with an array of parents homozygous for the resistance alleles at Fhb1 and other QTL were planted in breeding nurseries in KY, MO, IN, IL, MI, OH and NY. These lines were genotyped at Fhb1 and other resistance QTL at the USDA-ARS Eastern Regional Small Grains Genotyping Lab, Raleigh, NC. This material is being phenotyped for FHB traits, and in some cases yield and other agronomic traits in the individual Co-PI's scab and yield nurseries. Based on genotypic and phenotypic data, a number of pairs of sister lines, homozygous for resistance and susceptibility alleles at each QTL were identified in each breeding program. Lines included in the study were planted in fall 2011 and FHB phenotyping, yield testing and milling and baking quality analysis occurred in the 2010-2011 season. Phenotyping will include standard FHB traits such as incidence, severity, FDK and DON.

Impact: Outputs will include information on the effect of genetic background on QTL expression, sharing of lines to use as parents, and possible identification of lines worthy of joint germplasm and/or cultivar release. This project will result in immediate sharing of germplasm lines with QTL-derived resistance, often paired with native resistance. The extensive phenotyping and testing of these lines should expedite the release of those lines with variety release potential. Beyond individual institution releases, it is possible that the regional evaluation of these lines will identify some candidates for joint release as improved FHB-resistant, low DON varieties. Finally, this project will provide crucial information on the variability of QTL effects across genetic backgrounds. This will inform breeders in the soft winter wheat region on the probability of success of deploying these QTL in high yielding resistant, low DON varieties and thus make the breeding process more efficient.

1. **What major problem or issue is being resolved relevant to Fusarium head blight (scab) and how are you resolving it?**

 Objectives: 1) Phenotype advanced breeding lines that are candidates for release; 2) place FHB and other agronomic, disease resistance, and quality data in database; 3) report on purification and seed increase of the best lines.

 Coordinated evaluation of breeding lines among the programs in the NWW provides all breeding programs in the CP with FHB resistance data from multiple locations in a single season. This coordinated evaluation of breeding material plays an important role in the identification of breeding lines with high levels of FHB resistance. Our objective is to cooperatively obtain information on breeding lines from various programs within the CP and the SWW CP to allow the breeders involved to make better decisions about which breeding lines to advance and release.

2. **List the most important accomplishment and its impact (i.e. how is it being used) to minimize the threat of Fusarium head blight or to reduce mycotoxins. Complete both sections (repeat sections for each major accomplishment):**

 Accomplishment: About 250 breeding lines in cooperative nurseries including the Uniform Northern Winter Wheat Scab Nursery, the Uniform Preliminary Northern Winter Wheat Scab Nursery, the Uniform Southern Scab Nursery, the Uniform Eastern Soft Winter Wheat Nursery, and the Adv. and Prelim. Five-State Nurseries were evaluated for FHB resistance in a misted, inoculated FHB field nursery. Lines from the Univ. of Illinois program were submitted for all of the cooperative nurseries, thus, breeding lines with FHB resistance were made available to other breeding programs for use as germplasm. Four University of Illinois breeding lines (out of five entries) were among the most FHB resistant lines in the 2011 NUWWN and four University of Illinois breeding lines (out of five entries) were among the most FHB resistant lines in the 2011 PNUWWN. IL02-18228 was entered into the 2011 Uniform Southern Winter Wheat Scab Nursery and this line was one of the most FHB resistant lines in the nursery based on several parameters, including % FDK and DON level.

 Impact: The data provided were useful to many different breeding programs in making decisions about which breeding lines merit further evaluation as varieties and which breeding lines will be useful as germplasm. Exchange of FHB resistant breeding lines among programs is essential and will contribute to the development of FHB resistant varieties. Obtaining FHB resistance data for entries in the cooperative nurseries from many environments allow wheat breeders to make better selection decisions about what lines to advance for further evaluation. Breeding lines from the University of Illinois breeding program were made available to other breeding programs for use as parents if the breeders wish to use them.

3. What major problem or issue is being resolved relevant to Fusarium head blight (scab) and how are you resolving it?

The objective of this project is to develop populations, knowledge of the genetics of FHB resistance, and breeding methodologies for rapid improvement of FHB resistance in soft winter wheat (SWW). Genetics studies in SWW suggest that there are several unique sources of FHB resistance that are controlled by several QTL with moderate to small effects, thus complicating traditional MAS approaches. Consequently, recurrent selection is likely to be an effective breeding tool to accumulate favorable alleles. We propose to develop knowledge of the types of resistance, the genetics of this resistance, and efficient breeding methodologies for improving FHB resistance in SWW. Specifically, we will determine the genetic structure of FHB resistance in SWW, develop models to implement genomic selection (GS) for multiple FHB traits, and characterize RKI and RTA in SWW.

Our approach will be to phenotype and genotype a set of 70 elite SWW lines that have good FHB resistance and about 880 families derived from those elite lines. The population will be phenotyped for multiple FHB traits (INC, SEV, IND, FDK, DON) in field trials. The data will be used in an association analysis (AA) to determine the genetics of resistance in SWW to estimate the effect of QTL on multiple mechanisms of FHB resistance and the frequency of favorable alleles in the SWW. The data will also be used to develop a GS model that predicts the breeding value of individuals using estimated gene effects from the entire genome. The model can be used in subsequent selection cycles to choose superior parents with little or no phenotyping. Collectively, AA and GS will allow us to 1) select parents that are fixed for the same major genes, 2) design crosses that facilitate combining different genes and multiple mechanisms of FHB resistance, and 3) allow selection of superior individuals without phenotyping thereby reducing time per breeding cycle.

4. List the most important accomplishment and its impact (i.e. how is it being used) to minimize the threat of Fusarium head blight or to reduce mycotoxins. Complete both sections (repeat sections for each major accomplishment):

Accomplishment:
1. Ten elite lines were selected from the University of Illinois breeding program with strong FHB resistance derived primarily from native SWW sources.
2. About 137 inbred lines with varying levels of FHB resistance from multiple crosses involving the elite lines from above and parents with less FHB resistance were selected. There are 892 lines total from all of the programs involved.
3. The 70 elite lines (10 x 7 program) and 137 lines from the University of Illinois program were planted for phenotypic evaluation in the 2010-11. Incidence, severity, index, FDK, and DON data will be collected from the misted and spray inoculated FHB nursery. The set of 70 elite lines will be used to estimate environmental effects and to standardize data from the families tested at different locations.
Impact: The data will be used in an Association Analysis to determine the genetics of multiple mechanisms of FHB resistance in soft winter wheat. The large population size will enable us to estimate effects of genes with moderate to large effect. The family structure of the population will allow us to use both population and family-based association analysis techniques. The association analysis will 1) be used to evaluate the importance of previously identified QTL in soft red winter wheat, 2) identify new QTL with pronounced effects over genetic backgrounds, 3) estimate correlation of QTL effects for multiple mechanisms of FHB resistance, 4) identify adapted germplasm with these QTL, and 5) design crosses to combine mechanisms of resistance.

Include below a list of all germplasm or cultivars released with full or partial support of the USWBSI. List the release notice or publication. Briefly describe the level of FHB resistance.

Eleven lines from the University of Illinois were released in 2012 for commercial production as licensed varieties. All lines released have FHB resistance equal to, or better than, Bess. For comparison IL02-18228 is a line that has been identified from numerous trials to have a high level of FHB resistance.

Performance of University of Illinois lines and checks averaged over years 2010 – 2011 in the Advanced trial.

All data are from Urbana, IL except yield data are from four locations in Illinois.

<table>
<thead>
<tr>
<th>Name</th>
<th>Yield (bu/A)</th>
<th>Test Weight (lbs/bu)</th>
<th>Height (in)</th>
<th>Heading Date (after 4/30)</th>
<th>Leaf Rust (0-9)</th>
<th>SBMV (0-9)</th>
<th>BYDV stunting (%)</th>
<th>ISK (%)</th>
<th>DON Index (ppm)</th>
<th>FHB Index (0-100)</th>
<th>Kernel Rating (%)</th>
<th>DON Index (0-100)</th>
<th>kernel yield (bu/A)</th>
<th>Protein (lbs/bu)</th>
<th>Scab Evaluation Nursery</th>
<th>Kernel Yield (bu/A)</th>
<th>Protein (lbs/bu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL07-4415</td>
<td>74.6</td>
<td>55.5</td>
<td>38.0</td>
<td>9.0</td>
<td>4.3</td>
<td>6.5</td>
<td>4.5</td>
<td>11.4</td>
<td>13.3</td>
<td>28.6</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL07-6861</td>
<td>72.5</td>
<td>55.9</td>
<td>40.0</td>
<td>12.0</td>
<td>5.0</td>
<td>4.5</td>
<td>4.8</td>
<td>32.8</td>
<td>28.3</td>
<td>48.6</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL07-12948</td>
<td>75.1</td>
<td>58.4</td>
<td>40.7</td>
<td>10.5</td>
<td>3.7</td>
<td>2.0</td>
<td>4.0</td>
<td>26.8</td>
<td>26.7</td>
<td>46.5</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL07-16075</td>
<td>74.0</td>
<td>58.8</td>
<td>40.8</td>
<td>10.0</td>
<td>4.3</td>
<td>4.0</td>
<td>5.8</td>
<td>26.5</td>
<td>31.7</td>
<td>48.9</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL07-20728</td>
<td>79.6</td>
<td>60.0</td>
<td>39.7</td>
<td>10.3</td>
<td>2.3</td>
<td>4.0</td>
<td>4.0</td>
<td>21.4</td>
<td>25.0</td>
<td>43.7</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL07-24841</td>
<td>77.5</td>
<td>56.6</td>
<td>41.3</td>
<td>11.2</td>
<td>6.0</td>
<td>2.0</td>
<td>2.5</td>
<td>15.9</td>
<td>24.2</td>
<td>40.2</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL02-18228</td>
<td>69.5</td>
<td>58.7</td>
<td>41.2</td>
<td>10.5</td>
<td>6.7</td>
<td>2.5</td>
<td>4.0</td>
<td>9.1</td>
<td>16.7</td>
<td>29.9</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bess</td>
<td>68.6</td>
<td>55.8</td>
<td>40.2</td>
<td>11.8</td>
<td>8.0</td>
<td>3.0</td>
<td>5.0</td>
<td>25.3</td>
<td>20.0</td>
<td>42.3</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pio 25R35</td>
<td>67.9</td>
<td>55.6</td>
<td>39.3</td>
<td>13.7</td>
<td>4.7</td>
<td>7.0</td>
<td>4.0</td>
<td>47.5</td>
<td>46.7</td>
<td>62.9</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pio 25R47</td>
<td>80.1</td>
<td>54.6</td>
<td>38.2</td>
<td>12.3</td>
<td>4.3</td>
<td>3.0</td>
<td>4.0</td>
<td>62.3</td>
<td>72.5</td>
<td>77.5</td>
<td>10.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pio 25R62</td>
<td>72.9</td>
<td>51.6</td>
<td>36.8</td>
<td>11.8</td>
<td>8.3</td>
<td>2.0</td>
<td>4.0</td>
<td>52.9</td>
<td>70.8</td>
<td>73.8</td>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial average</td>
<td>70.8</td>
<td>57.1</td>
<td>40.1</td>
<td>11.2</td>
<td>6.2</td>
<td>3.7</td>
<td>4.5</td>
<td>28.0</td>
<td>28.8</td>
<td>46.9</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD0.05</td>
<td>5.9</td>
<td>1.3</td>
<td>1.9</td>
<td>1.4</td>
<td>1.3</td>
<td>2.7</td>
<td>2.2</td>
<td>17.1</td>
<td>13.5</td>
<td>10.9</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV (%)</td>
<td>10.1</td>
<td>1.5</td>
<td>3.2</td>
<td>8.1</td>
<td>13.2</td>
<td>37.1</td>
<td>25.3</td>
<td>40.6</td>
<td>31.1</td>
<td>15.5</td>
<td>27.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of trials</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance of University of Illinois lines and checks averaged over years 2009 - 2011 in the Advanced trial.,
All data are from Urbana, IL except yield data are from four locations in Illinois.

<table>
<thead>
<tr>
<th>Name</th>
<th>Yield Weight (bu/A)</th>
<th>Test Weight (lbs/bu)</th>
<th>Height (in)</th>
<th>Heading Date (after 4/30)</th>
<th>Leaf Rust (0-9)</th>
<th>SBMV Incidence (0-9)</th>
<th>BYDV Stunting (%)</th>
<th>FHB Index (%)</th>
<th>Kernel Rating (0-100)</th>
<th>ISK Index (0-100)</th>
<th>DON ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL05-4236</td>
<td>76.5</td>
<td>58.0</td>
<td>41.7</td>
<td>10.7</td>
<td>6.7</td>
<td>4.0</td>
<td>3.6</td>
<td>30.5</td>
<td>28.3</td>
<td>47.6</td>
<td>6.8</td>
</tr>
<tr>
<td>IL06-7550</td>
<td>70.5</td>
<td>55.6</td>
<td>40.2</td>
<td>12.9</td>
<td>8.7</td>
<td>5.3</td>
<td>5.2</td>
<td>21.8</td>
<td>25.6</td>
<td>41.2</td>
<td>7.5</td>
</tr>
<tr>
<td>IL06-13721</td>
<td>74.7</td>
<td>58.8</td>
<td>38.6</td>
<td>9.2</td>
<td>7.0</td>
<td>3.0</td>
<td>6.2</td>
<td>12.1</td>
<td>20.0</td>
<td>34.4</td>
<td>5.2</td>
</tr>
<tr>
<td>IL06-14262</td>
<td>74.8</td>
<td>57.4</td>
<td>40.4</td>
<td>13.3</td>
<td>6.7</td>
<td>3.5</td>
<td>5.6</td>
<td>16.3</td>
<td>14.8</td>
<td>35.0</td>
<td>5.9</td>
</tr>
<tr>
<td>IL06-23571</td>
<td>74.7</td>
<td>59.5</td>
<td>42.3</td>
<td>11.3</td>
<td>4.3</td>
<td>1.0</td>
<td>5.0</td>
<td>26.6</td>
<td>21.1</td>
<td>43.1</td>
<td>4.8</td>
</tr>
</tbody>
</table>

IL02-18228 71.1 59.6 41.1 11.3 6.7 2.5 4.0 7.6 13.3 25.5 3.5
Bess 69.3 56.4 40.7 13.3 8.0 3.8 5.0 23.7 23.3 42.1 8.2
Pio 25R35 72.5 56.2 39.4 14.8 4.7 6.7 4.2 43.2 41.1 59.0 11.6
Pio 25R47 79.9 55.3 38.2 13.4 4.3 3.0 3.6 62.3 66.1 74.9 13.1
Pio 25R62 75.6 52.9 36.9 12.7 8.3 2.0 4.2 47.6 63.9 69.4 14.3

Trial average 72.4 57.8 39.8 12.3 6.2 3.9 4.8 29.4 28.5 46.8 6.9
LSD_{0.05} 5.3 1.2 1.8 1.3 1.3 2.8 2.0 17.2 13.9 11.6 3.1
CV (%) 9.2 1.4 3.1 6.9 13.2 34.7 21.6 38.9 32.6 16.5 27.9
No. of trials 11 3 3 3 1 3 3 3 3 3 3

SBMV: 0 = no symptoms, 9 = severe symptoms
Incidence = the percent of heads in a row with symptoms.
Severity = the percent of spikelets in a head with symptoms.
FHB Index = incidence x severity/100.
Kernel rating = the percent of shriveled seed.
ISK Index combines incidence, severity, and the % shriveled seed.
Varieties with greater resistance have lower numbers.
Include below a list of the publications, presentations, peer-reviewed articles, and non-peer reviewed articles written about your work that resulted from all of the projects included in the grant. Please reference each item using an accepted journal format. If you need more space, continue the list on the next page.

Bulletin:

Abstracts:

Presentation:

(Form – FPR11)