USDA-ARS/
U.S. Wheat and Barley Scab Initiative
FY08 Final Performance Report (approx. May 08 – April 09)
July 15, 2009

Cover Page

<table>
<thead>
<tr>
<th>PI:</th>
<th>Jose Gonzalez</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution:</td>
<td>South Dakota State University</td>
</tr>
</tbody>
</table>
| Address: | Plant Science Department
280 Northern Plains Biostress Building
1110 Rotunda Lane N.
Brookings, SD 57007 |
| E-mail: | jose.gonzalez@sdstate.edu |
| Phone: | 605-688-6907 |
| Fax: | 605-688-4452 |
| Fiscal Year: | 2008 |
| USDA-ARS Agreement ID: | 59-0790-8-066 |
| USDA-ARS Agreement Title: | Molecular Characterization and Pyramiding of Novel Scab Resistance Sources Adapted to the Northern Plains Growing Region. |
| FY08 USDA-ARS Award Amount: | $ 19,376 |

USWBSI Individual Project(s)

<table>
<thead>
<tr>
<th>USWBSI Research Category*</th>
<th>Project Title</th>
<th>ARS Adjusted Award Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDHR-SPR</td>
<td>Molecular Characterization and Pyramiding of Novel Scab Resistance Sources Adapted to the Northern Plains Growing Region.</td>
<td>$19,376</td>
</tr>
</tbody>
</table>

Total Award Amount $ 19,376

*MGMT – FHB Management
FSTU – Food Safety, Toxicology, & Utilization of Mycotoxin-contaminated Grain
GDER – Gene Discovery & Engineering Resistance
PBG – Pathogen Biology & Genetics
BAR-CP – Barley Coordinated Project
HWW-CP – Hard Winter Wheat Coordinated Project
VDHR – Variety Development & Uniform Nurseries – Sub categories are below:
 SPR – Spring Wheat Region
 NWW – Northern Winter Wheat Region
 SWW – Southern winter Wheat Region

(Form FPR08)
Project 1: Molecular Characterization and Pyramiding of Novel Scab Resistance Sources Adapted to the Northern Plains Growing Region.

1. What major problem or issue is being resolved relevant to Fusarium head blight (scab) and how are you resolving it?

DNA-based molecular markers have been used to map quantitative trait loci (QTL) with one of major objective of marker aided selection (MAS). Traditional QTL mapping techniques have some important disadvantage, most important one time requirement to accomplish; thereby the markers are not available on time to plant breeders. This limitation is very serious for devastating diseases (such as wheat scab); breeders can not wait for QTL mapping accomplished to practice MAS. In reality, as soon as breeders notice a new source of resistance and start introgression into adopted genetic backgrounds and follow classical selection techniques. Other limitation of traditional approaches identified markers may not be applicable to other genetic backgrounds then tested in mapping experiment, and mapping population development.

Moreover, the mapping populations rarely give rise to new cultivars. The mapped QTL or marker associated with it may or may not work well in genetic background of breeders’ interest beside the parents involved in mapping experiment. Thus, there is requirement for a validation experiment before MAS is deployed in a whole breeding population. This will further lengthen the process. Thus, for successful and efficient application of marker in a breeding program, a single step method that can simultaneously map QTL of interest, validate the QTL / marker effectiveness in multiple genetic backgrounds of breeding interest, and practice MAS, are desirable. Using families generated at breeding program for mapping purpose can be good solution for such single step method.

We tested applicability of family-pedigree based linkage (variance component and pedigree-wide regression) and association mapping (Quantitative transmission disequilibrium test) techniques commonly used in human genetics to plant breeding populations using the well characterized QTL, $Qfhs.ndsu-3BS$ in spring wheat families from SDSU wheat breeding program. The result shows the usefulness of human genetics the approach to detect relatively large effect QTLs earliest possible in breeding program and subsequent use in MAS.

Furthermore the mapping technique was further optimized for sample size requirement (family number and type) for QTLs of different magnitude using a simulated data set. Using developed method, mapping of QTLs in two resistant sources: SD3934 and Mult757 are underway. Novel QTLs, identified if any, will help in development of resistant genotypes by
diversifying the resistance source other than Sumai 3. Not limited to scab resistance, the identified mapping technique might be useful in mapping sever other traits of breeders’ interest in wheat and other crops.

2. List the most important accomplishment and its impact (i.e. how is it being used) to minimize the threat of Fusarium head blight or to reduce mycotoxins. Complete both sections (repeat sections for each major accomplishment):

Accomplishment:
- Family based linkage and association mapping technique is validated and optimized. The method is useful for mapping other novel resistance sources (or traits of breeders’ interest) with or without modification.
- Mapping of SD3934 and Mult757 are underway using the validated method. We have developed two mapping population each with ~90 families with a cross with ~40 parents. The populations are evaluated for scab resistance in greenhouse trials. Genotyping of SD3934 families is underway.

Impact:
The validated method is quick and efficient for QTL with particular interest in development of markers using breeding families. This method, if employed will help to accelerate the mapping and MAS process in entire breeding program. In addition, the mapped QTL, if novel QTLs identified, will be useful to diversify the resistance source beside dependence on Sumai 3. As the mapping population, itself is breeding families, could lead to development of cultivar after more generations of selections, yield trials, and multi-location testing.
Include below a list of the publications, presentations, peer-reviewed articles, and non-peer reviewed articles written about your work that resulted from all of the projects included in the grant. Please reference each item using an accepted journal format. If you need more space, continue the list on the next page.

Peer-reviewed article – Published

Peer-reviewed article – Under-preparation

Poster / Oral Presentation – presented
Poster / Oral Presentation – scheduled in near future

If your FY08 USDA-ARS Grant contained a VDHR-related project, include below a list all germplasm or cultivars released with full or partial support of the USWBSI. List the release notice or publication. Briefly describe the level of FHB resistance. If this is not applicable (i.e. no VDHR-related project) to your FY08 grant, please insert ‘Not Applicable’ below.

Not applicable