Why Malting Barley in New York?

- Farm brewery bill Passed in 2012
 - “New York State labeled beer”, permit not required to serve by glass, branch offices, tax incentive
 - Until end of 2018, at least 20% of ingredients have to be grown in NY, increasing to 60% in 2019
 - Jumps to 90% minimum by end of 2024

- How much barley is NY producing now?
 - ~1600 acres in 2015, ~2000 in 2016

- What has the Cornell Small Grains program done so far?

- Why are we implementing a NY malting barley breeding program?
Spring Two Row Malting Barley Breeding for the Northeastern U.S.

• Spring 2-row: avoid winterkill risk, short generation time, preferred by brewers & maltsters

• Dependent on excellent collaboration in the barley community – Oregon State Univ, Univ of Minnesota, Canadian and European programs et al.

• Opportunity to test approaches to rapidly and efficiently start a small breeding program from scratch
 • Integration of high-throughput phenotyping methods and genomic selection to speed up development of a spring two row malting variety adapted to New York

• Base population - 7 biparentals linked by common female parent
Traits of interest

• Fusarium head blight (*Fusarium graminearum*)
• Spot blotch (*Cochliobolus sativus*)
• Pre-harvest sprouting
• Malt quality
<table>
<thead>
<tr>
<th>Entry</th>
<th>Grain Yield (kg/ha)</th>
<th>Test Weight Kgh</th>
<th>Hect</th>
<th>Preharv Sprout %</th>
<th>FHB Inc</th>
<th>FHB Sev</th>
<th>FHB Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conlon</td>
<td>890</td>
<td>1905</td>
<td>1474</td>
<td>689</td>
<td>32</td>
<td>65.4</td>
</tr>
<tr>
<td>2</td>
<td>Lacey</td>
<td>1265</td>
<td>2390</td>
<td>1813</td>
<td>1096</td>
<td>2102</td>
<td>63.7</td>
</tr>
<tr>
<td>3</td>
<td>Quest</td>
<td>1393</td>
<td>2119</td>
<td>1774</td>
<td>1055</td>
<td>1946</td>
<td>63.1</td>
</tr>
<tr>
<td>4</td>
<td>Cerveza</td>
<td>1023</td>
<td>1974</td>
<td>1691</td>
<td>452</td>
<td>1833</td>
<td>62.1</td>
</tr>
<tr>
<td>5</td>
<td>Rawdale</td>
<td>989</td>
<td>1655</td>
<td>1474</td>
<td>32</td>
<td>1926</td>
<td>64.2</td>
</tr>
<tr>
<td>6</td>
<td>AAC Synergy</td>
<td>1171</td>
<td>2228</td>
<td>1954</td>
<td>765</td>
<td>2091</td>
<td>64.4</td>
</tr>
<tr>
<td>7</td>
<td>KWS Tinka</td>
<td>1030</td>
<td>2445</td>
<td>2080</td>
<td>909</td>
<td>2262</td>
<td>63.5</td>
</tr>
<tr>
<td>8</td>
<td>KWS13/3353(Beckie)</td>
<td>1259</td>
<td>2103</td>
<td>2137</td>
<td>868</td>
<td>2120</td>
<td>62.8</td>
</tr>
<tr>
<td>9</td>
<td>KWS1207(Fantex)</td>
<td>1122</td>
<td>2456</td>
<td>1788</td>
<td>894</td>
<td>2122</td>
<td>64.3</td>
</tr>
<tr>
<td>10</td>
<td>Craft</td>
<td>1222</td>
<td>2205</td>
<td>1824</td>
<td>911</td>
<td>2014</td>
<td>67.6</td>
</tr>
<tr>
<td>11</td>
<td>Pinnacle</td>
<td>1122</td>
<td>1772</td>
<td>1750</td>
<td>403</td>
<td>1764</td>
<td>65.9</td>
</tr>
<tr>
<td>12</td>
<td>ND Genesis</td>
<td>1082</td>
<td>2113</td>
<td>1400</td>
<td>1133</td>
<td>1757</td>
<td>64.9</td>
</tr>
<tr>
<td>13</td>
<td>ND26691</td>
<td>1256</td>
<td>2116</td>
<td>1703</td>
<td>887</td>
<td>1909</td>
<td>62.1</td>
</tr>
<tr>
<td>14</td>
<td>2ND28065</td>
<td>1128</td>
<td>1615</td>
<td>1537</td>
<td>882</td>
<td>1676</td>
<td>66.5</td>
</tr>
<tr>
<td>15</td>
<td>Harmony</td>
<td>1641</td>
<td>2236</td>
<td>1587</td>
<td>746</td>
<td>1912</td>
<td>61.3</td>
</tr>
<tr>
<td>16</td>
<td>Oceania</td>
<td>1611</td>
<td>2504</td>
<td>1790</td>
<td>1117</td>
<td>2147</td>
<td>60.4</td>
</tr>
<tr>
<td>17</td>
<td>Bastille</td>
<td>1160</td>
<td>1632</td>
<td>1297</td>
<td>371</td>
<td>1424</td>
<td>74.5</td>
</tr>
<tr>
<td>18</td>
<td>HS5817-11</td>
<td>1390</td>
<td>2637</td>
<td>1667</td>
<td>802</td>
<td>2152</td>
<td>62.5</td>
</tr>
<tr>
<td>19</td>
<td>AAC Azimuth</td>
<td>971</td>
<td>2286</td>
<td>1096</td>
<td>774</td>
<td>1691</td>
<td>65.1</td>
</tr>
<tr>
<td>20</td>
<td>AAC Starbucks</td>
<td>1318</td>
<td>2126</td>
<td>1923</td>
<td>817</td>
<td>2025</td>
<td>77.2</td>
</tr>
<tr>
<td>21</td>
<td>M160</td>
<td>1302</td>
<td>2077</td>
<td>2054</td>
<td>743</td>
<td>2066</td>
<td>63.2</td>
</tr>
<tr>
<td>22</td>
<td>09N2-31</td>
<td>1228</td>
<td>2189</td>
<td>2336</td>
<td>987</td>
<td>2264</td>
<td>63.8</td>
</tr>
<tr>
<td>23</td>
<td>09N2-68</td>
<td>1161</td>
<td>1656</td>
<td>567</td>
<td>174</td>
<td>2222</td>
<td>63.8</td>
</tr>
<tr>
<td>24</td>
<td>09N2-84</td>
<td>1156</td>
<td>1977</td>
<td>1594</td>
<td>868</td>
<td>1785</td>
<td>62.6</td>
</tr>
<tr>
<td>25</td>
<td>09N2-51</td>
<td>625</td>
<td>1766</td>
<td>1444</td>
<td>349</td>
<td>1605</td>
<td>64.6</td>
</tr>
<tr>
<td>26</td>
<td>09N2-58</td>
<td>1014</td>
<td>1957</td>
<td>2116</td>
<td>800</td>
<td>2037</td>
<td>63.0</td>
</tr>
<tr>
<td>27</td>
<td>09N2-79</td>
<td>968</td>
<td>1723</td>
<td>1505</td>
<td>705</td>
<td>1614</td>
<td>64.6</td>
</tr>
<tr>
<td>28</td>
<td>09N2-16</td>
<td>1001</td>
<td>1390</td>
<td>1808</td>
<td>919</td>
<td>1599</td>
<td>66.8</td>
</tr>
<tr>
<td>29</td>
<td>09N2-65</td>
<td>798</td>
<td>1773</td>
<td>1638</td>
<td>535</td>
<td>1706</td>
<td>64.1</td>
</tr>
<tr>
<td>30</td>
<td>2MS14_3342-018</td>
<td>1240</td>
<td>1812</td>
<td>1805</td>
<td>613</td>
<td>1809</td>
<td>66.0</td>
</tr>
<tr>
<td>31</td>
<td>2MS14_3336-002</td>
<td>657</td>
<td>1771</td>
<td>1652</td>
<td>1054</td>
<td>1711</td>
<td>65.7</td>
</tr>
<tr>
<td>32</td>
<td>2MS14_3305-005</td>
<td>641</td>
<td>2102</td>
<td>1757</td>
<td>827</td>
<td>1929</td>
<td>64.7</td>
</tr>
<tr>
<td>33</td>
<td>2MS14_3336-018</td>
<td>1072</td>
<td>1555</td>
<td>1876</td>
<td>980</td>
<td>1762</td>
<td>66.8</td>
</tr>
<tr>
<td>34</td>
<td>2MS14_3345-009</td>
<td>1175</td>
<td>1722</td>
<td>1326</td>
<td>740</td>
<td>1627</td>
<td>64.5</td>
</tr>
<tr>
<td>35</td>
<td>2MS14_3317-018</td>
<td>1377</td>
<td>1817</td>
<td>2000</td>
<td>756</td>
<td>1908</td>
<td>68.1</td>
</tr>
<tr>
<td>36</td>
<td>2MS14_3335-007</td>
<td>855</td>
<td>1405</td>
<td>1997</td>
<td>439</td>
<td>1701</td>
<td>65.3</td>
</tr>
<tr>
<td>37</td>
<td>2MS14_3342-026</td>
<td>670</td>
<td>1768</td>
<td>1707</td>
<td>705</td>
<td>1738</td>
<td>65.9</td>
</tr>
<tr>
<td>38</td>
<td>2MS14_3342-019</td>
<td>825</td>
<td>1816</td>
<td>1333</td>
<td>577</td>
<td>1575</td>
<td>65.5</td>
</tr>
<tr>
<td>39</td>
<td>2MS14_3317-015</td>
<td>1011</td>
<td>2043</td>
<td>1857</td>
<td>693</td>
<td>1950</td>
<td>67.4</td>
</tr>
</tbody>
</table>

| Mean | 1085 | 1982 | 1721 | 765 | 1852 | 65.1 |

| CV | 27.9 | 13.3 | 11.8 | 31.8 | 19.9 | 6.1 |
The primary reason for implementing a spring 2-row malting barley program for the Northeast is because the environments in the northeast pose constraints that are unique to this region – FHB, foliar pathogens, preharvest sprouting.
Near Infrared Spectroscopy: Plant Breeding Applications

• NIR spectroscopy for non-destructive measurement of chemical composition of grain
• Non-destructive prediction of grain chemistry traits - moisture, oil, protein, mycotoxins
• Can we build single kernel calibration models for barley grain protein and β-glucan for selection of single kernels in F₂ generation?
• How does early selection for quality traits in F₂ and F₃ seeds affect training population performance and selection for disease resistance?
Single Seed Analyzer

- Designed and built by Paul Armstrong, USDA Kansas State University
- Load seed into 48 well microtiter plate
- Single seed NIR spectroscopy
- Seed weight
- 3-D photography
- Returns seed to same well in microtiter plate
- Runs 4-48-well plates in 1 to 1.5 hrs
Calibration Samples

• Single kernels are small samples so separate calibrations for protein & β-glucan
• Each seed was run through SSA twice and absorbance values averaged
• Seed weight recorded for all samples
• Spectrophotometer wavelengths 957-1635nm used for model calibration
• Partial least squares regression models fit with ParLes chemometrics software
• Seed from replicated regional yield trials in 2014 and 2015
Calibration sets

- **Protein**: 132 seeds (12 varieties, 11 seeds each variety)
 - Destructively phenotyped on a LECO TrueMac N combustion analyzer
 - Single kernel protein values ranged from 2.9 – 19.6%
- **β-glucan**: 192 seeds (8 varieties, 12 seeds each variety)
 - Destructively phenotyped with modified Megazyme mixed linkage β-glucan enzymatic assay kit, scaled to 1/10 for microtiter plate
 - β-glucan values ranged from 0.7 - 6.3 % w/w
Calibration results:
Percent Protein

$R^2 = 0.77$ (r = 0.88)
Root Mean Sq. Error = 1.24
Mean = 10.3% protein
Calibration result: β-glucan

$R^2 = 0.51$ $(r = 0.71)$
Root Mean Sq. Error = 0.94
Mean = 3.6% β-Glucan
Selection using a single kernel protein model

Protein model adequate for selection
β-glucan model may be useful for negative selection

- 1000 F₂ seeds from each of 7 biparental populations
- Selected seeds w/ protein values between 10 & 8.5%
- Corrected for F₁ plant and spike within plant
- Selection index = protein/10 +10*(seed weight)

Selected best 10% (100) per biparental & planted in GH
Included tails of each population selected for comparison
Spring Two Row Malting Barley Breeding for the Northeastern U.S.

2016
- April: Initial crosses in
- June: 25 F_1 seeds from each biparental cross planted, harvested late August
- September: SSA selections made, F_2 seed planted early October
- December: F_2 harvest, select again in January

2017
- January: Plant F_3
- April: Harvest and field plant F_4, phenotype and increase seed for 2018
Experimental Plans

- Crosses
 - F1
 - Random selections
 - Single Seed Analyzer selection
 - F2 September ‘16
 - F3 January ‘17
 - F4 April ‘17 (field evaluation)

Evaluate in State-wide Trials and/or implement Recurrent Selection 2018

Planting date
- February ‘16
- June ‘16
- June ‘16
Next Steps

- Phenotype F₃:₄ selections, divergent selections, and random lines at two locations in the field summer 2017
- Evaluate potential for genomic selection for traits measured in 2017
- Explore integrating environmental or genetic covariates into model
- Seed increase for state-wide evaluation in 2018
Acknowledgements

- **USDA Wheat and Barley Scab Initiative**, This material is based upon work supported by the U.S. Department of Agriculture, under Agreement No. FY16-BA-004 and FY16-NW-002. This is a cooperative project with the U.S. Wheat & Barley Scab Initiative

- **USDA National Institute of Food and Agriculture**, NRI Triticeae Coordinated Agricultural Project 2011-68002-30029 Improving Barley and Wheat Germplasm for Changing Environments

- **Bill & Melinda Gates Foundation** grant to Cornell University for Borlaug Global Rust Initiative Durable Rust Resistance in Wheat

- **Cornell Small Grains Breeding Project Team**: David Benscher, Amy Fox, Jesse Chavez

- **Cornell Cooperative Extension Team**: Gary Bergstrom, Mike Stanyard, Kevin Ganoe et al.
Questions?
Biparental crosses

Training population summer 2017
- Two cohorts randomized together
- 2 environments + FHB nursery
- 100 lines each BP (1400 total)
- Genotype all lines
- Agronomic, disease, and malt quality phenotypes

Validation population summer 2019
Other projects

- Link between barley lipoxygenases (LOX) and FHB/DON susceptibility or resistance
 - LOX enzymes in malt lead to accumulation of compounds that contribute to stale “cardboard” taste in old beer
 - LOX also implicated in resistance and susceptibility to different pathogens in maize and wheat; complex relationships still being unraveled
 - Is a LOX locus co-localizing with FHB resistance QTL from mapping studies and GWAS?
 - Screen JIC panel and UMN population with KASP assay