RUTGERS

Trichothecene mycotoxins inhibit mitochondrial translation – Implications for the mechanism of toxicity

> Anwar Bin-Umer Tumer Laboratory SCAB USA 2011 Meeting December 5th, 2011

Rationale

JTGERS

- Trichothecenes contribute to the virulence of the pathogen.
- Toxicity is not simply due to cytosolic translation inhibition.
 - Mechanism of action is not yet fully understood.
- Identify molecular mechanisms underlying trichothecene toxicity →
 Identify genes conferring resistance to *Fusarium*-related diseases.
- "Model" the mechanism of toxicity and identify key players in it using a genome wide approach in yeast.
- Identify targets in *Arabidopsis thaliana* and then in wheat & barley.

Gene deletions affecting mitochondrial function is the largest group resistant to Tcin

IGERS

How critical is mitochondria in trichothecene toxicity?

• 64% of the gene deletions conferring resistance to Tcin were associated with mitochondria.

Functional mitochondria are necessary for survival when energy source is *non fermentable* glycerol (Glyc)

[■]Rutgers

Mitochondria are critical for trichothecene toxicity

- Yeast cells are more sensitive to trichothecenes when carbon source is glycerol.
- Rho^o (i.e. no functional mitochondria) cells are resistant to trichothecenes.

Is mitochondrial translation targeted by trichothecenes?

• 43% of the gene deletions associated with mitochondria were classified as translation-related.

Trichothecenes directly inhibit mitochondrial translation

 Mitochondria isolated from yeast cells were treated with trichothecenes for 10 minutes.

Is mitochondrial membrane integrity damaged by trichothecenes?

• All mitochondrial morphology related mutants resistant to Tcin were defective in membrane fusion.

Trichothecenes alter mitochondrial morphology

- To visualize mitochondrial morphology \rightarrow Yeast cells transformed with mtGFP
- Untreated \rightarrow tubular network.
- 6 h post treatment \rightarrow fragmented mitochondria.

Trichothecenes cause mitochondrial membrane depolarization

- **Mitochondrial Membrane Potential** (ψ_{mito}) : Biomaker for membrane integrity.
- Membrane depolarization → fragmentation.

GERS

- MitoTracker Red: Only enters actively respiring mitochondria.
- Untreated \rightarrow High fluorescence $\rightarrow \psi_{mito} \rightarrow actively$ respiring mitochondria
- 6 h treatment \rightarrow Low fluorescence $\rightarrow \psi_{mito} \rightarrow \phi$ dysfunctional mitochondria

Is mitochondrial translation inhibition due to membrane damage?

- Trichothecenes inhibited translation in isolated mitochondria.
- Trichothecenes \rightarrow membrane depolarization \rightarrow fragmentation.

Trichothecenes do not alter mitochondrial morphology at low doses.

- Identified low doses → no membrane damage.
- To visualize mitochondrial morphology → Yeast cells transformed with mtGFP.
- 6 h post treatment → no severe fragmentation.

RUTGERS

Mitochondrial membrane damage occurs late during trichothecene toxicity

- 6 h treatment with low doses \rightarrow no significant changes to ψ_{mito}
- 18 h treatment with low doses \rightarrow drop in ψ_{mito} (membrane depolarization)

Is mitochondrial translation inhibited at these low doses?

• Trichothecenes, at low doses, damage mitochondrial membrane integrity in a time dependent manner.

Mitochondrial translation inhibition is not a secondary effect

- 6 h post treatment with low doses:
 - Cytosolic translation is *not* inhibited
 - Mitochondrial membrane integrity is *not* damaged.
 - Mitochondrial translation *is* inhibited.
- Mitochondrial translation can be separated from cytosolic translation.

Conclusion

- Mitochondrial translation is more sensitive to trichothecenes than cytosolic translation.
- During trichothecene toxicity mitochondrial translation is targeted before mitochondrial membranes and cytosolic translation.

Implications

- Is mitochondrial translation inhibited in plant cells?
- Will protection against mitochondrial translation inhibition and membrane damage confer resistance?
- What is the role of chloroplast in trichothecene toxicity?
- How does the pathogen protect its own mitochondria?
- Mitochondria as potential target for engineering resistance against diseases like FHB.

Acknowledgments

• Tumer Lab

RUTGERS

- Dr. Susan McCormick
- USDA (Project Funding)
- SCABUSA

• Dr. Nilgun Tumer

- Dr. John McLaughlin
- Dr. Xiao-Ping Li
- Dr. Jennifer Nielson Kahn
- Dr. Mike Pierce
- Dr. Kerrie May
- Qing Yan
- Debaleena Basu

Questions?