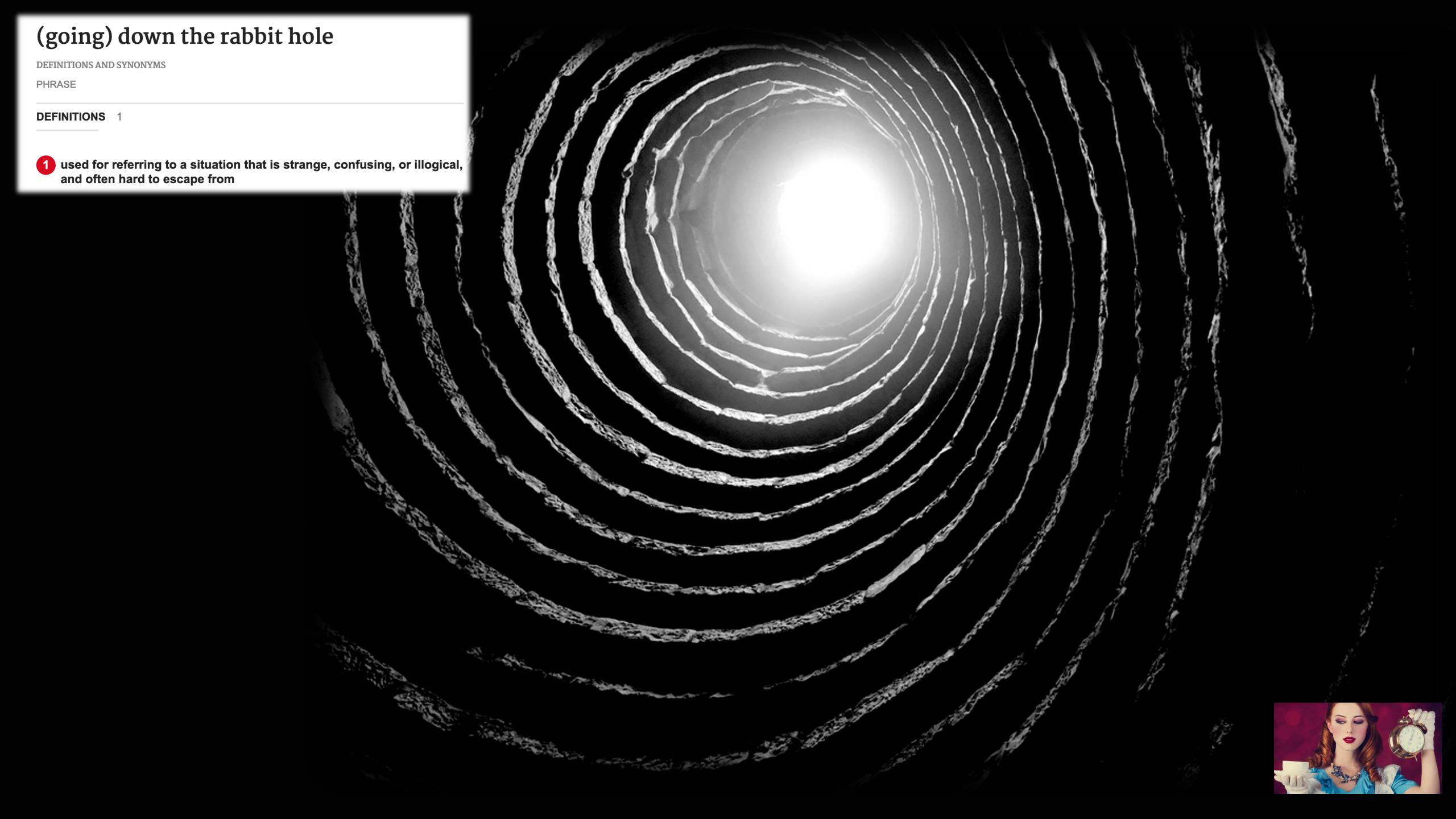


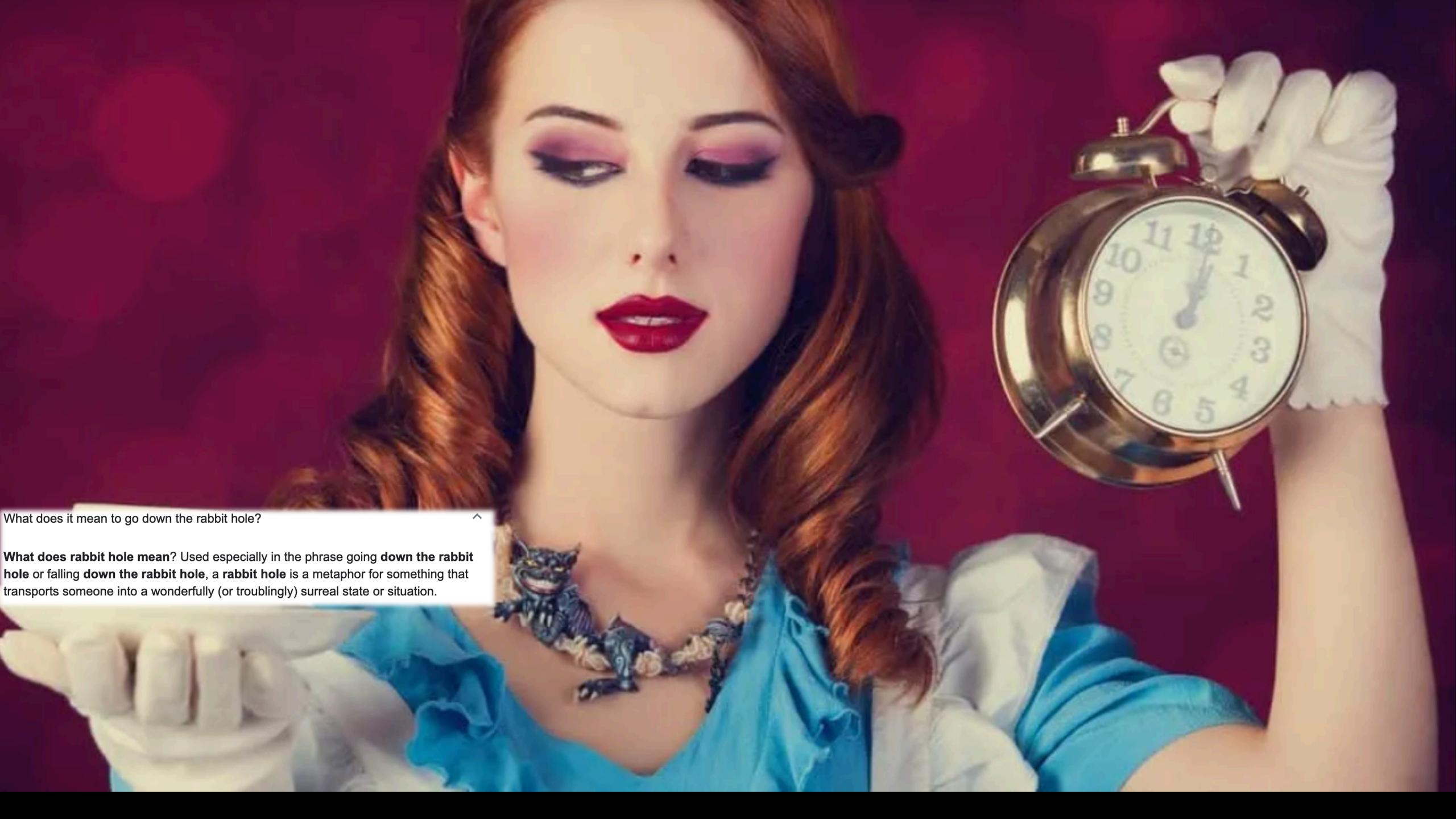
GOING DOWN THE RABBIT HOLE:

EFFECT OF CLIMATE CHANGE ON FHB AND SMALL GRAINS

University of Idaho
Extension

Juliet Marshall
Tod Shelman
Margaret Moll


Suzette Arcibal Baldwin


Belayneh Yimer

Linda Jones

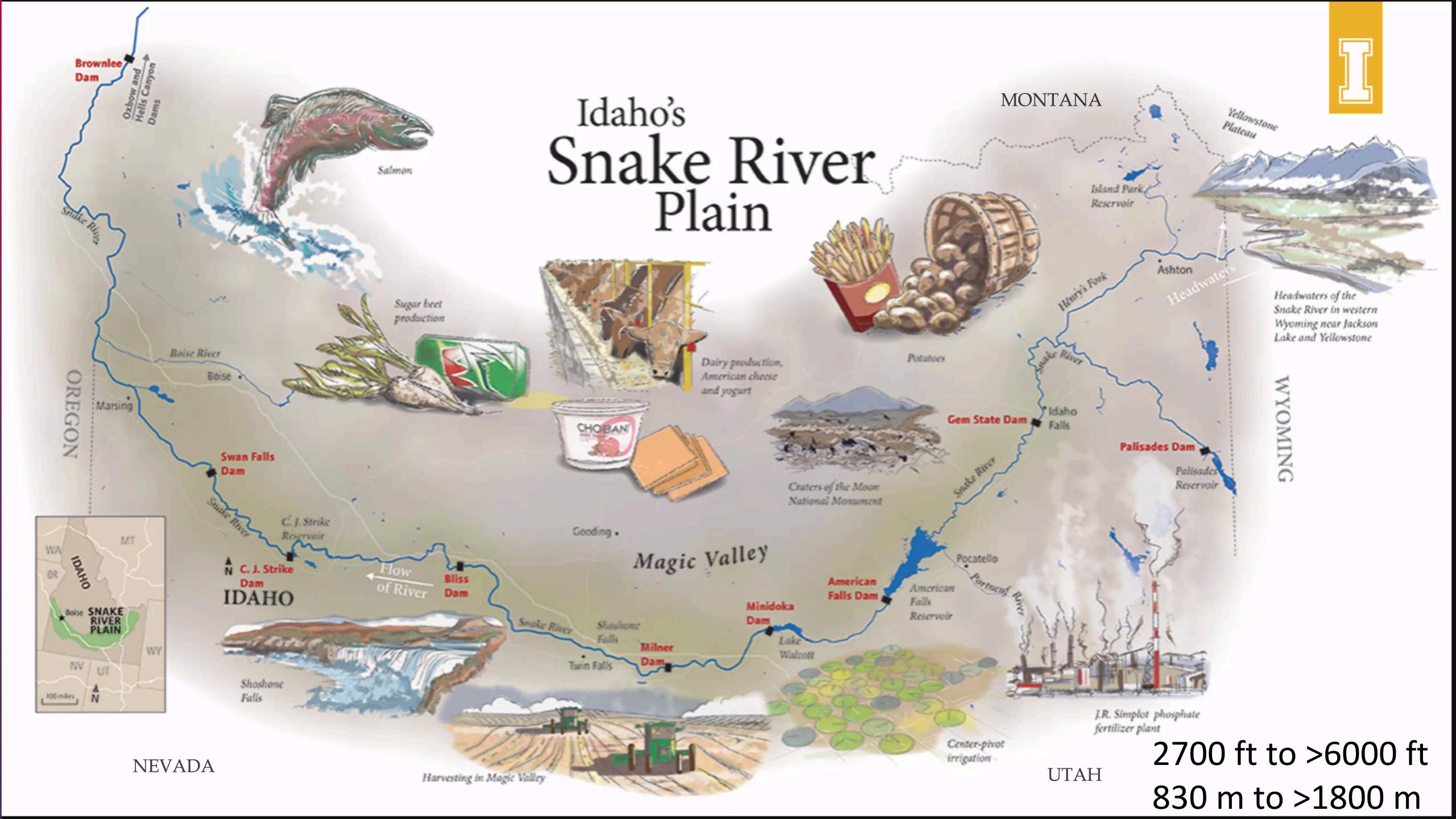
Martha Carillo

Rachel Patterson

INTERMOUNTAIN WEST AND PNW ENVIRONMENT

AGRICULTURAL
SOCIAL (ORGANIC)
CLIMATE

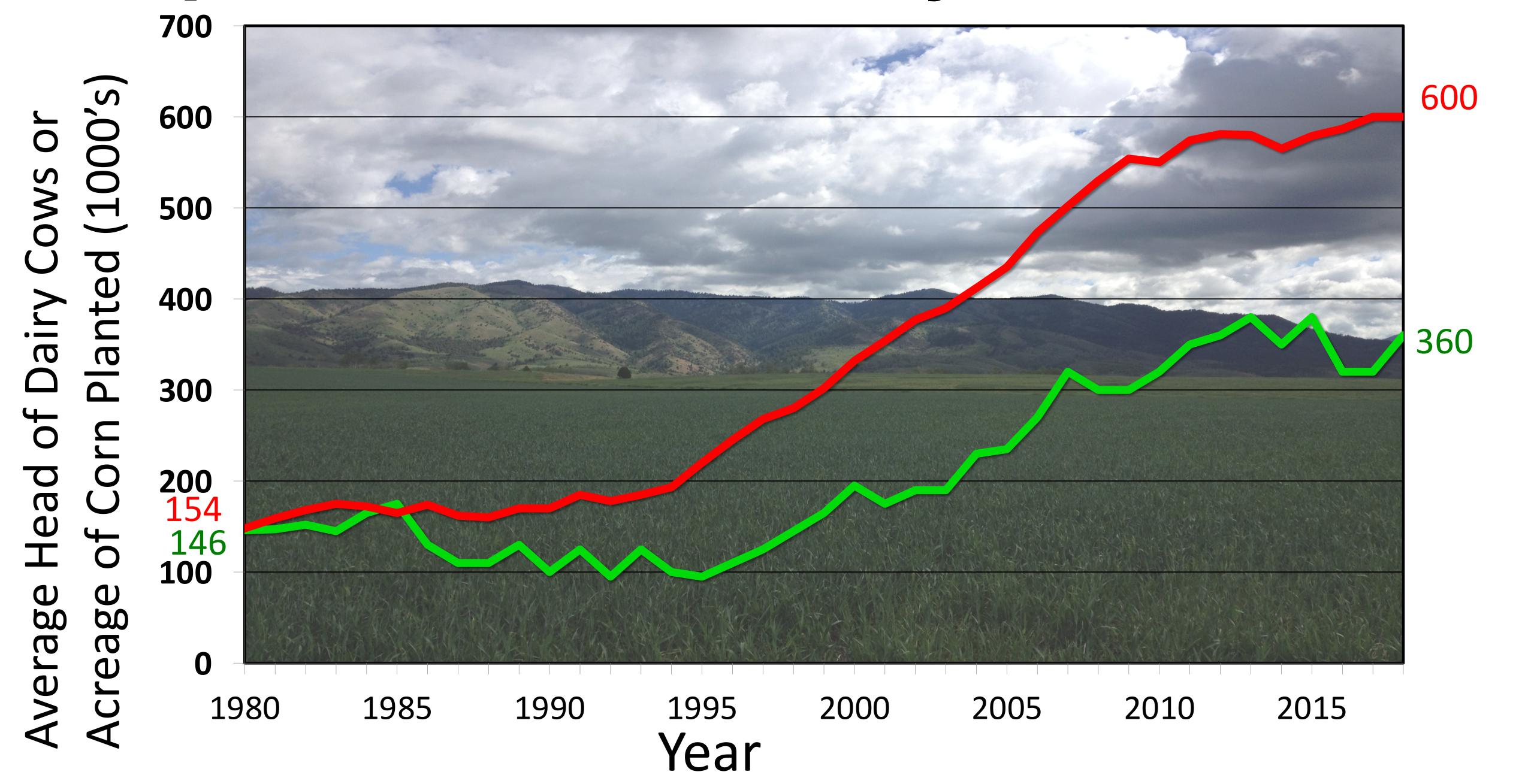
IDAHO'S AGRICULTURAL STATUS



30% OF IDAHO'S ECONOMY IS DIRECTLY BASED ON AGRICULTURE

30% of Idaho's economy is directly based on Agriculture

- #1 in Trout production
- #1 in Potato (almost 1/3 of US crop)
- #1 in Malt Barley
- #5 in Wheat production
- #3 in Dairy production (milk)



CHANGING AGRICULTURAL ENVIRONMENTS FOR THE PNW FOR THE LAST 30 YEARS

CROPPING SYSTEMS
IRRIGATION
CLIMATE

Crop Rotation - Corn and Dairy in Southern Idaho

I

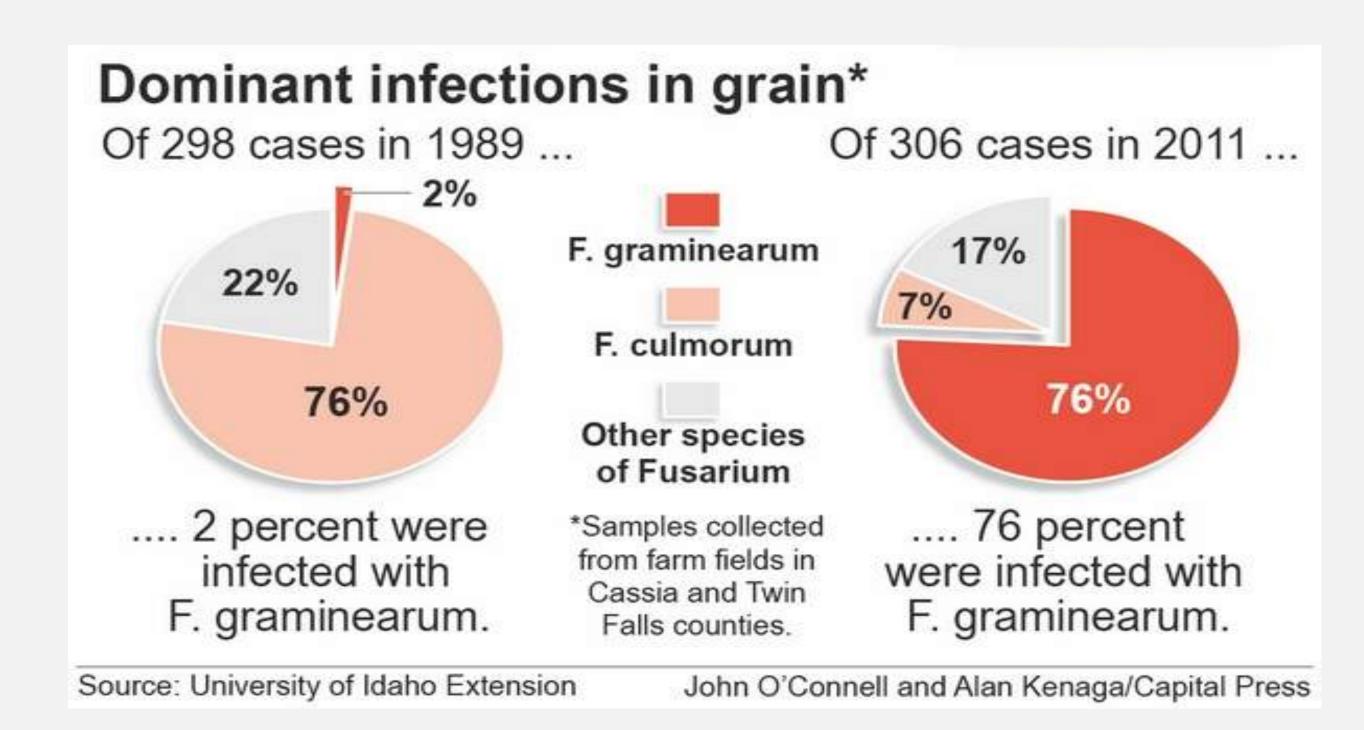
AN INCONVENIENT CROP

FHB IN IDAHO: THEN AND NOW

F. graminearum

F. culmorum

Plant Health Progress ◆ 2018 ◆ 19:125–127


https://doi.org/10.1094/PHP-10-17-0066-S

Plant Health Survey

Survey of Fusarium Species Associated with Fusarium Head Blight of Spring Wheat (Triticum aestivum) in Southeastern Idaho

Kaitlyn M. Bissonnette, Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Idaho Falls, 83402; **Philip Wharton** and **Jianli Chen,** Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Aberdeen, 83210; and **Juliet M. Marshall,** Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Idaho Falls, 83402

Accepted for publication 2 March 2018.

CLIMATE PREDICTION MODELS


CANADIAN CENTRE FOR CLIMATE MODELING AND ANALYSIS
HADLEY CENTRE IN THE UNITED KINGDOM
EPA WEBSITE ON GREENHOUSE GASES AND GLOBAL WARMING

Increasing CO₂
Greenhouse gases
Temperatures
Changing precipitation patterns

Atmospheric CO₂ concentration

Global average long-term atmospheric concentration of carbon dioxide (CO₂), measured in parts per million (ppm). Long-term trends in CO₂ concentrations can be measured at high-resolution using preserved air samples from ice cores.

Source: EPICA Dome C CO₂ record (2015) & NOAA (2018)

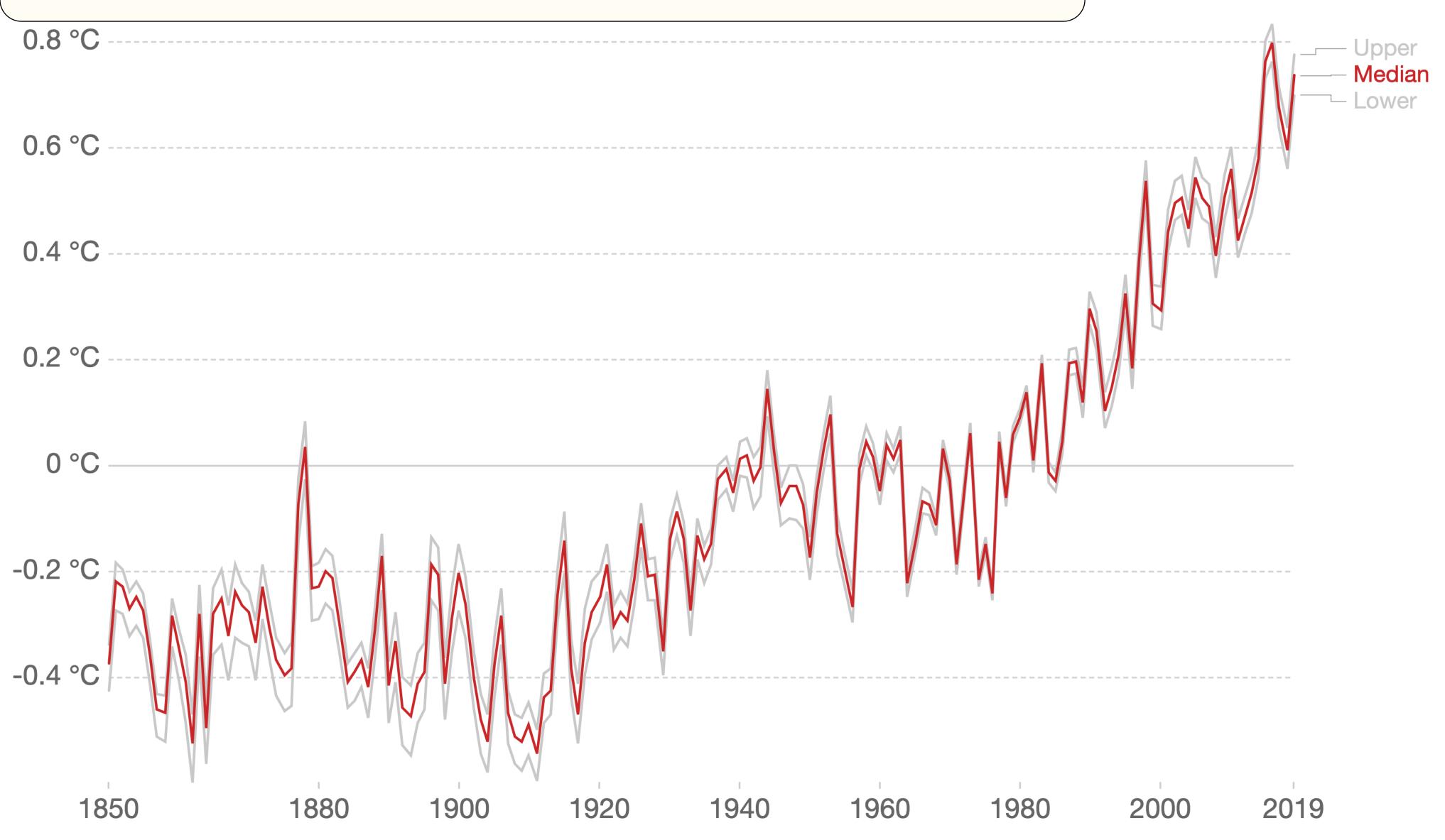
OurWorldInData.org/co2-and-other-greenhouse-gas-emissions • CC BY

Atmospheric CO₂ concentration

Global average long-term atmospheric concentration of carbon dioxide (CO₂), measured in parts per million (ppm). Long-term trands in CO₂ concentrations can be measured at high resolution using presented air complex from ico

- Should substantially INCREASE crop yields of: corn, cotton, soybeans, sorghum, barley, sugar beets, pastures and citrus
- Neutral or negative effects: wheat, rice, oats, hay, sugarcane, potatoes, and tomatoes

Up to a certain threshold level


Crop Quality! decreases in bread wheat

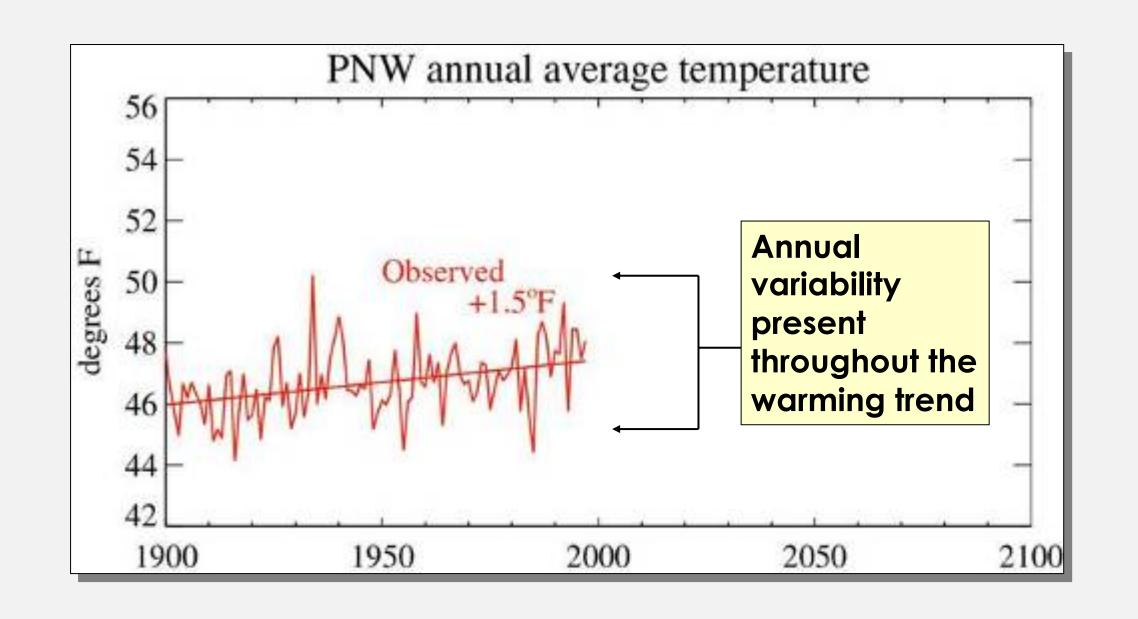
803,719 BCE

Average temperature anomaly, Global

Global average land-sea temperature anomaly relative to the 1961-1990 average temperature.

Source: Hadley Centre (HadCRUT4)

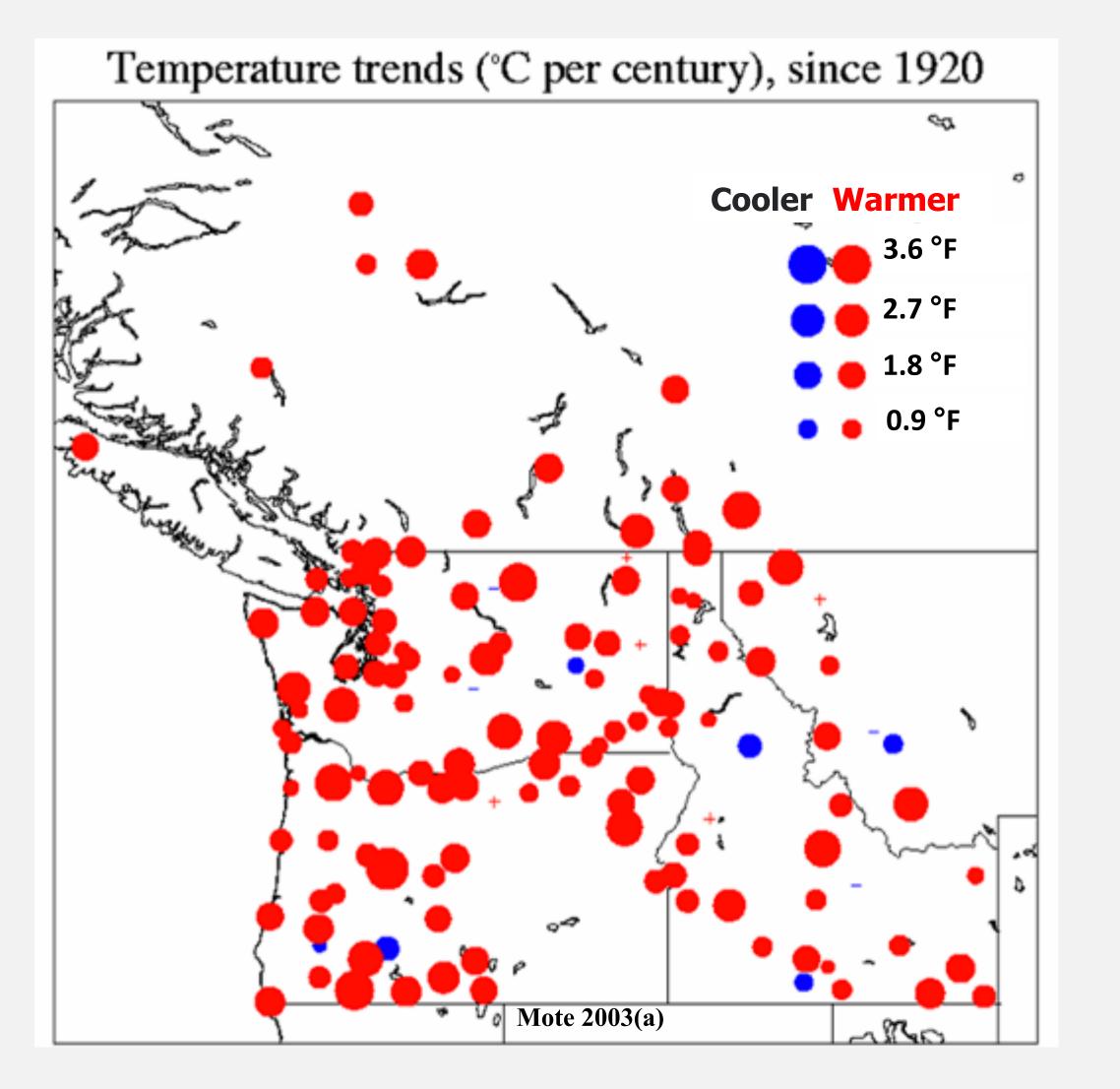
OurWorldInData.org/co2-and-other-greenhouse-gas-emissions • CC BY


Note: The red line represents the median average temperature change, and grey lines represent the upper and lower 95% confidence intervals.

TEMPERATURE TRENDS BY STATION

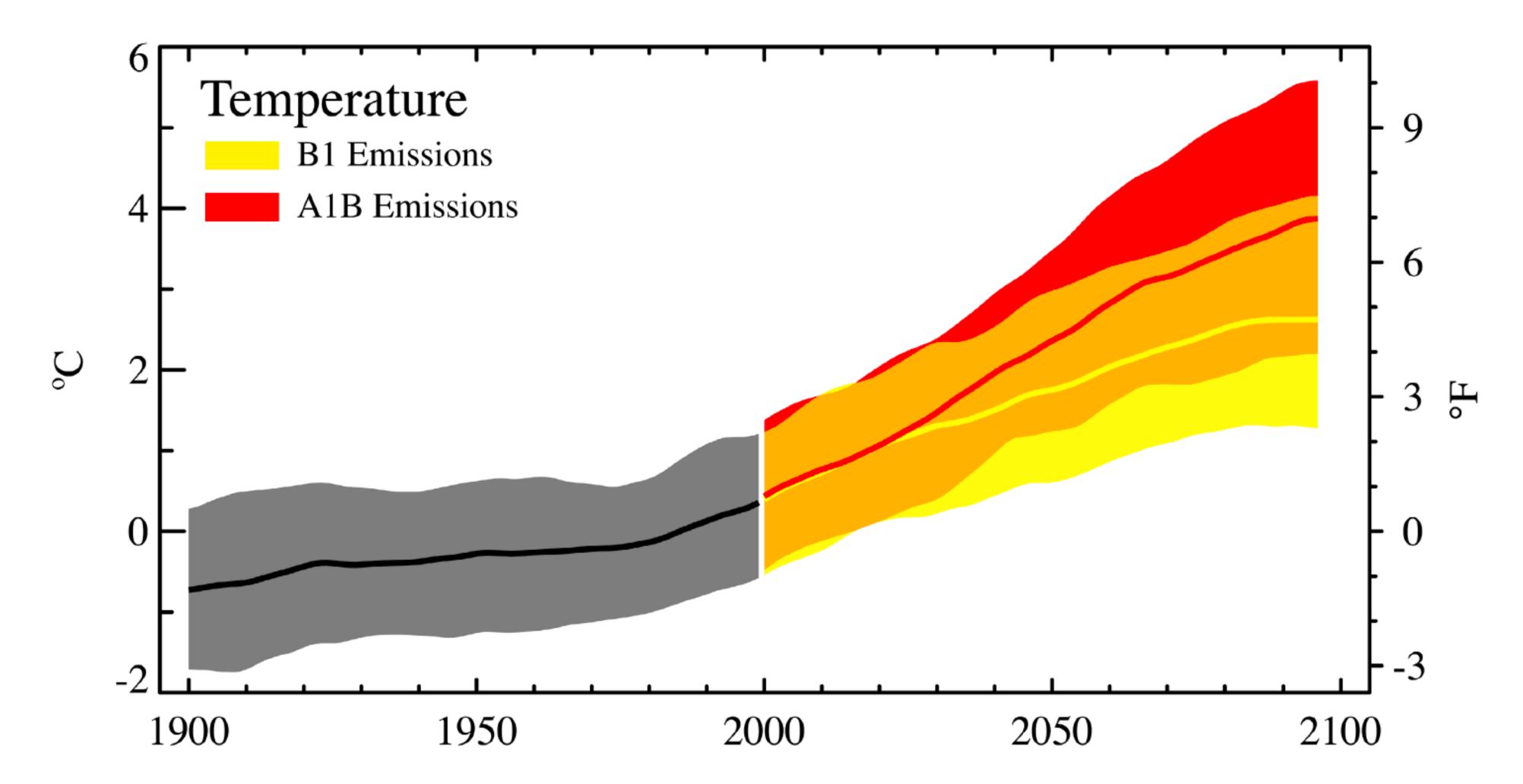
Average annual temperature increased +1.5°F in the PNW during the 20th century

- Almost every station shows warming
- Extreme cold conditions have become more rare
- •Low temperatures rose faster than high temperatures



TEMPERATURE TRENDS BY STATION

Average annual temperature increased +1.5°F in the PNW during the 20th century


- Almost every station shows warming
- Extreme cold conditions have become more rare
- •Low temperatures rose faster than high temperatures

INCREASING TEMPERATURES

INCREASING UP TO 5°F IN THE PNW

INCREASING TEMPERATURES

INCREASING UP TO 5°F IN THE PNW

EFFECTS PRONOUNCED DURING THE WINTER AND DURING THE NIGHT

Expansion of growing season

Migration of crops to the north

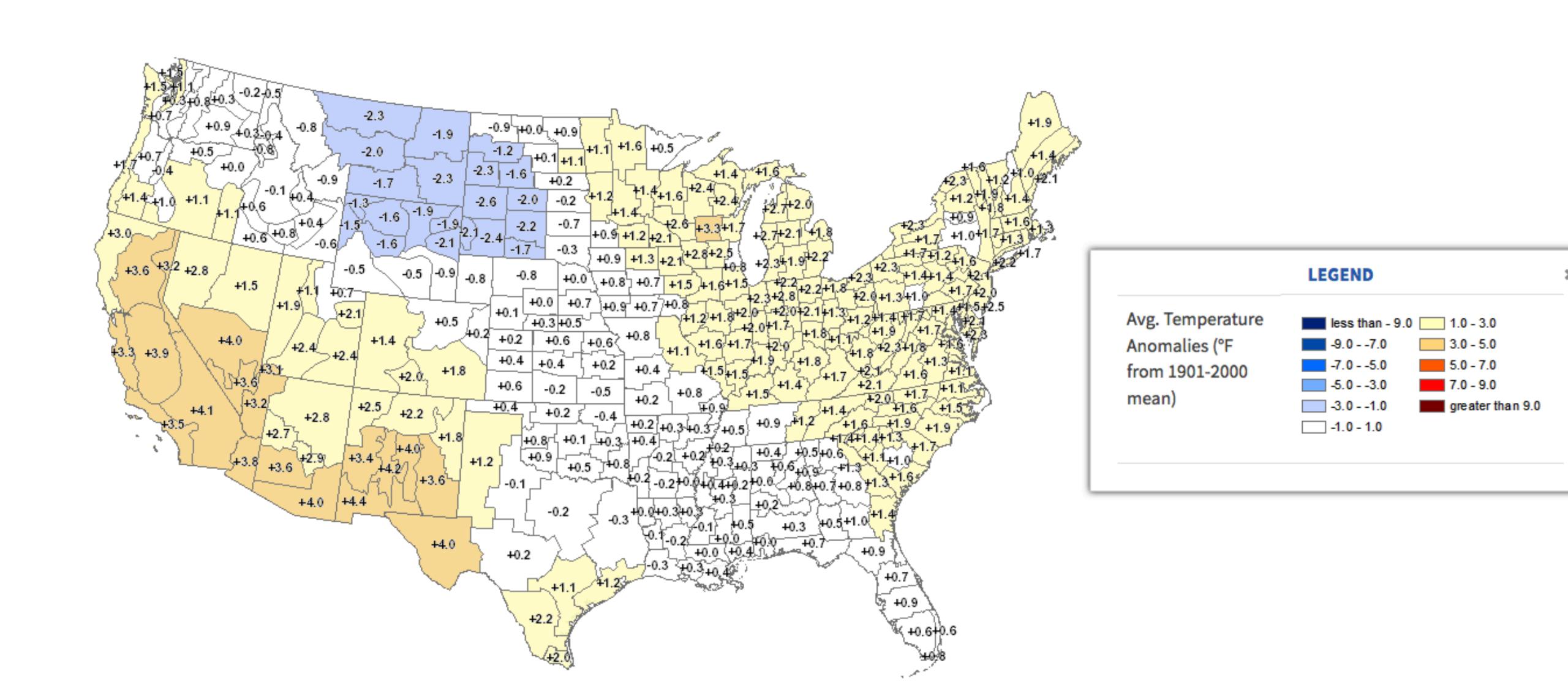
Addition of crops to the rotation

SIGN IN

WON NIOL

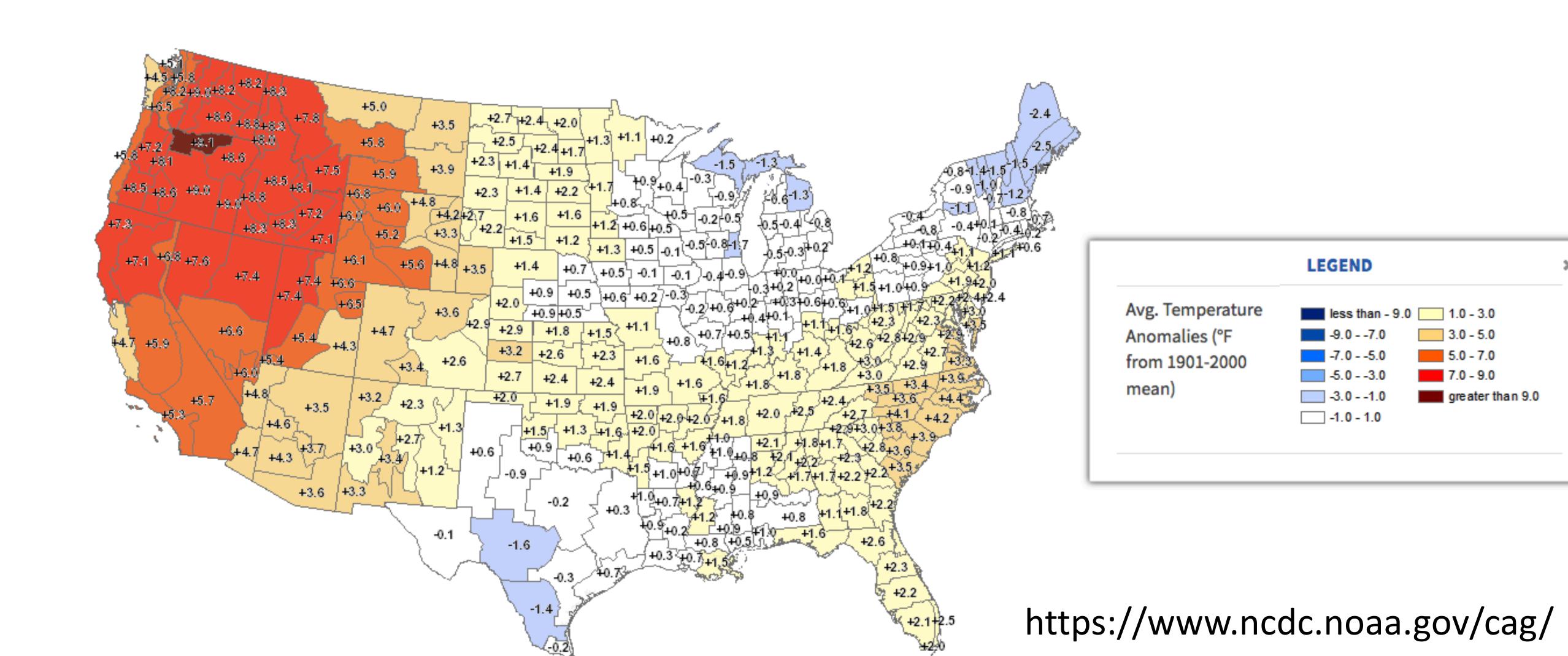
A Bayer researcher readies a combine to harvest test plots of corn in Manitoba, Canada, in October. TIM SMITH FOR THE WALL STREET JOURNAL

https://www.wsj.com/articles/a-warming-climatebrings-new-crops-to-frigid-zones-1543168786


INCREASING TEMPERATURES

INCREASING UP TO 5°F IN THE PNW

EFFECTS PRONOUNCED DURING THE
WINTER AND DURING THE NIGHT


Increased variability associated with unpredictable anomalies

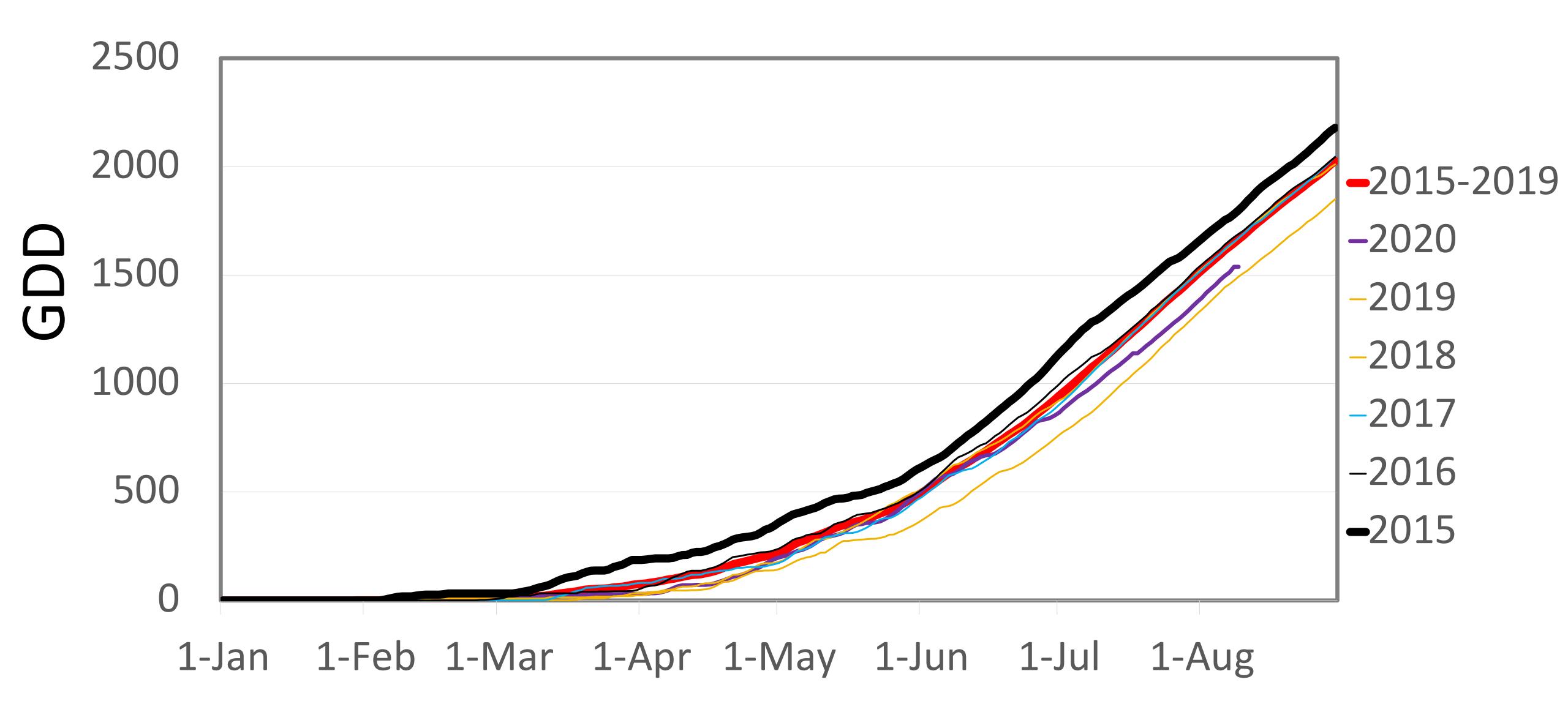
2014 TEMPERATURE ANOMALIES JUNE

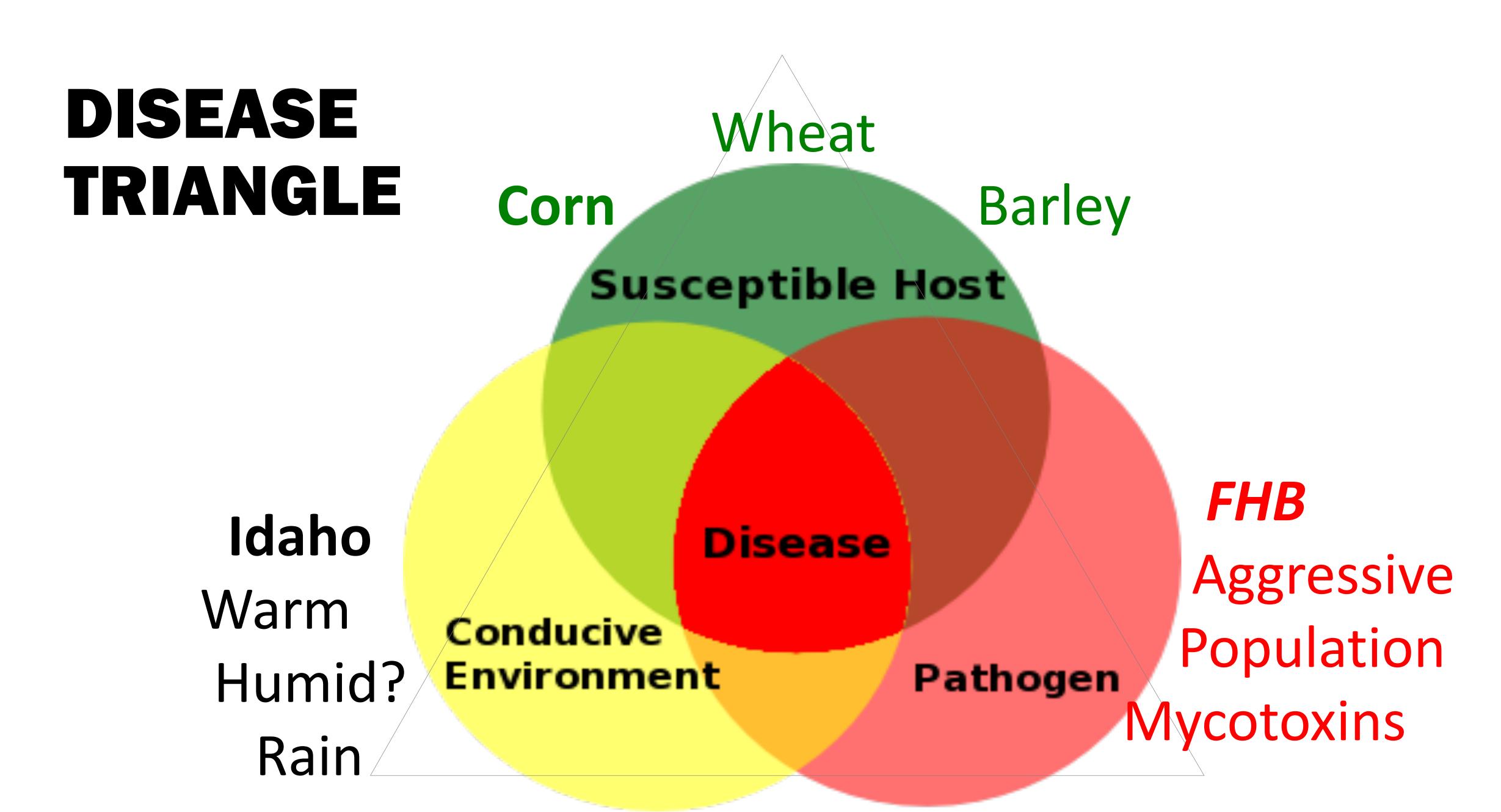
2015 TEMPERATURE ANOMALIES JUNE

ENVIRONMENTAL DIFFERENCES BETWEEN YEARS

						Mean	Average	Average
		Min	Max	Mean	Mean	Dew	Wind	Wind
		Temp	Temp	Temp	Humidity	point	speed	gusts
year								
2015 w	vheat	45.7	84.3	65.3	60.1	47.9	5.5	22.8
2014 w	vheat	42.8	75.0	58.3	68.6	46.1	5.9	23.2
2015 b	arley	47.2	87.2	67.2	61.5	50.1	4.6	18.9
2014 b	arley	43.6	78.3	60.7	66.9	47.1	5.0	20.4

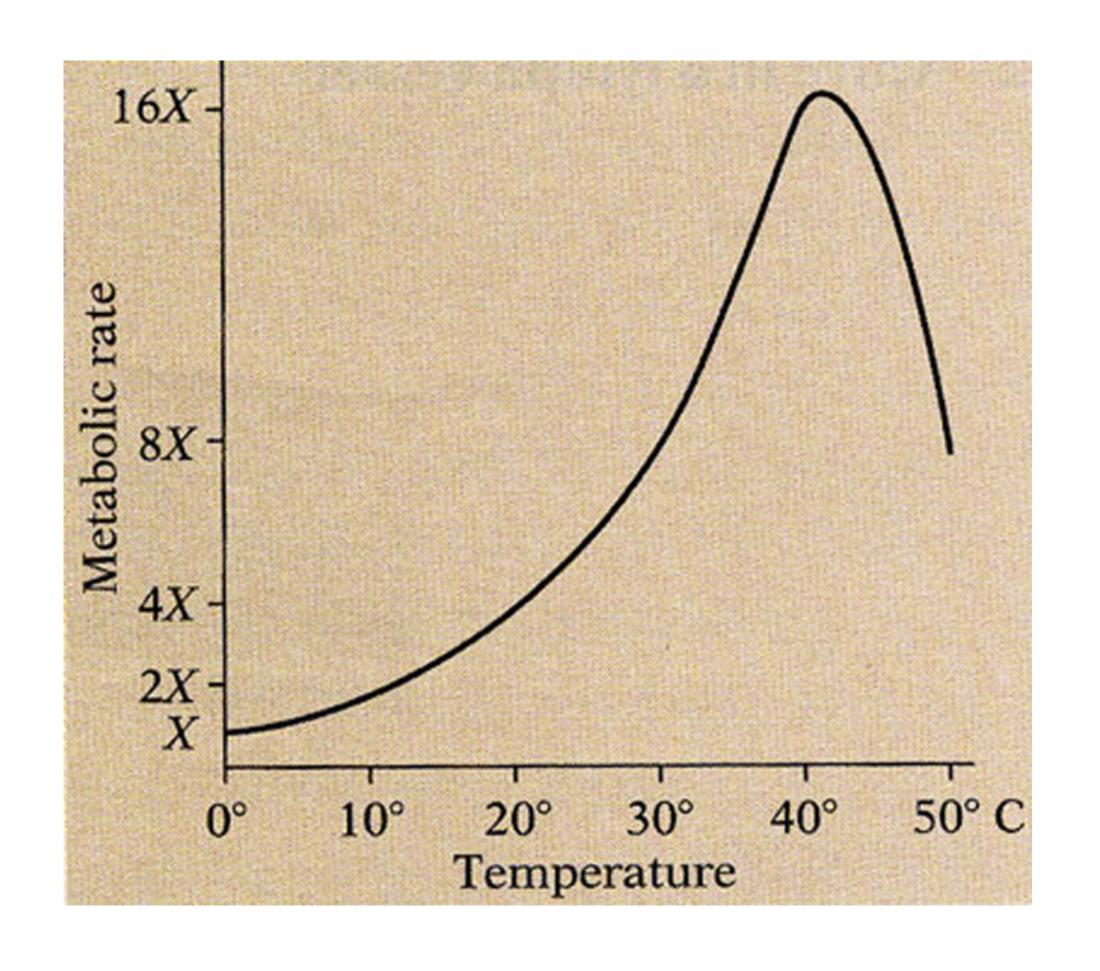
Average temperature data at flowering plus 10 days following at the Idaho Falls Extension variety trial locations


ENVIRONMENTAL DIFFERENCES BETWEEN YEARS



						Mean	Average	Average
		Min	Max	Mean	Mean	Dew	Wind	Wind
		Temp	Temp	Temp	Humidity	point	speed	gusts
year								
2015	wheat	45.7	84.3	65.3	60.1	47.9	5.5	22.8
2014	wheat	42.8	75.0	58.3	68.6	46.1	5.9	23.2
	difference	2.9	9.2	7.0	-8.5	1.8	-0.4	-0.5
2015	barley	47.2	87.2	67.2	61.5	50.1	4.6	18.9
2014	barley	43.6	78.3	60.7	66.9	47.1	5.0	20.4
	difference	3.6	8.9	6.5	-5.4	3.0	-0.4	-1.5

Average temperature data at flowering plus 10 days following at the Idaho Falls Extension variety trial locations


Growing Degree Days (GDD) 2015-2020

The relationship between metabolic rate and temperature is often expressed as Q_{10} , which measures the rate increase for each 10° rise in temperature.

Metabolic rates often have a Q10 of around 2. If the metabolic rate of an animal at 0° is X, then at 10° the rate would be 2X, at 20°, 4X, etc. Notice that the rate increases more and more rapidly as the temperature increases.

Increased emphasis on screening winter varieties of wheat and barley

DETERMINING FUSARIUM HEAD BLIGHT RESISTANCE OF SPRING BARLEY IN IDAHO

Suzette Arcibal Baldwin¹, Belayneh Yimer¹, Thomas Baldwin², Yanhong Dong³ and Juliet Marshall¹

¹University of Idaho, Department of Entomology, Plant Pathology and Nematology, Aberdeen, ID

²North Dakota State University, Department of Plant Pathology, Fargo, ND, and ³University of Minnesota, Department of Plant Pathology, St. Paul, MN

Idaho is currently the nation's top barley producing state and one of the best environments to produce excellent quality, disease and toxin-free barley. There had previously been no concerted effort to determine levels of susceptibility to Fusarium head blight (FHB) in the state since deoxynivalenol (DON) levels mostly have remained below detectable levels or below 0.5 ppm. For the first time in 2015, however, unacceptable levels of DON were detected in commercial barley production in Eastern Idaho. Area producers need to know the variety response to FHB infection under the unique irrigated production conditions in southern Idaho. With the support of U.S. Wheat and Barley Scab Initiative (USWBSI), spring barley lines have been evaluated for FHB resistance at Aberdeen, ID since 2014. A second screening location was established at Kimberly, ID in

Our specific objectives at these two locations are to:

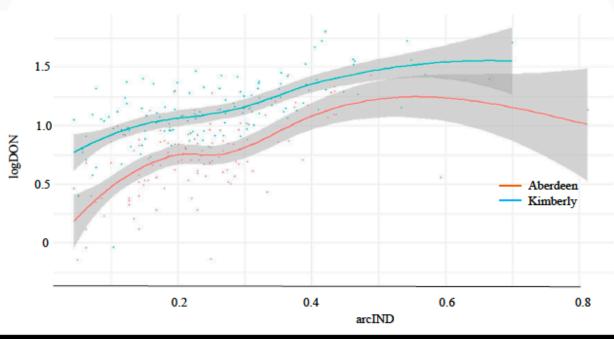
- 1) determine the degree of resistance that exists in currently grown varieties and advanced lines to local isolates of Fusarium graminearum, and
-) provide DON data to regional breeders and growers to increase the ability to select the best varieties for breeding and crop production.

Location	n	IND	(%)	DON (ppm)		
Location		Min	Max	Min	Max	
Aberdeen	69	0.2	37.4	1.6	20.4	
Kimberly	65	>0.1	39.8	3.6	58.3	

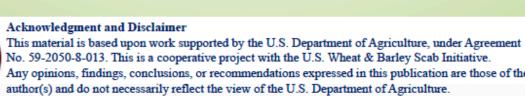
Location	df		ND	DON		
Location	aı -	F	P	F	P	
Aberdeen	68	2.49	0.0004	2.58	0.002	
Kimberly	64	4.92	<.0001	6.66	<.0001	

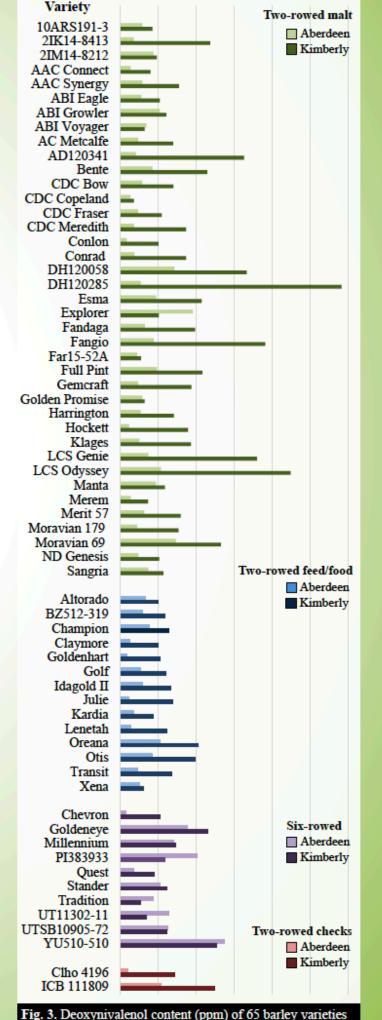
able 3. Comparison of Pearson Correlations (r) of FHB Inde nd DON with transformed FHB Index values (arcIND) ar

Pearson Cor	relation (r)	Aberdeen	Kimberly
IND	DON	0.51	0.63
arcIND	logDON	0.58	0.64


Acknowledgment and Disclaimer

Acknowledgment and Disclaimer


This material is based upon work supported by the U.S. Department of Agriculture, under Agreed No. 59-2050-8-013. This is a cooperative project with the U.S. Wheat & Barley Scab Initiative. Any opinions, findings, conclusions, or recommendations expressed in this publication are those author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the


MATERIALS AND METHODS Locations: University of Idaho Aberdeen Research and Extension Center, Aberdeen, ID;

- USDA-ARS Northwest Irrigation and Soils Research, Kimberly, ID
- Planting dates: 02 May 2019 (Aberdeen) and 21 March 2019 (Kimberly)
- Experimental design: Randomized complete block design (RCBD) with 2 replications
- ❖ Corn spawn inoculation: Infected kernels (30 g/m²) were applied ~3 weeks before head emergence of the earliest
- Conidial inoculation: Spore suspensions (total concentration of 100,000 macroconidia/ml) were applied with a CO₂ backpack sprayer at 40 psi walking 1 ft/sec. Up to three times applications were made one week apart starting at head emergence (Feekes 10.5) of the earliest heading varieties.
- Irrigation: Aside from regular irrigation, fine mist sprinkler systems were used to irrigate barley plots from the time of the start of initial spray inoculation until end of disease ratings.
- FHB evaluation: Barley plots were evaluated for severity and incidence at soft dough (Feekes 11.2). The FHB Index was calculated as IND = (Incidence x Severity) / 100.
- Deoxynivalenol (DON) analysis: Subsamples of harvested grain were sent to Univ. of Minnesota DON Testing Lab.
- ❖ Data analysis: GLIMMIX procedure in SAS (v. 9.4)

- Spring barley varieties are vulnerable to Fusarium head blight (FHB) and deoxynivalenol (DON) contamination under inoculated, irrigated environments in Southern Idaho.
- Maximum IND and DON values were ~ 40% and >50 ppm (Table 1).
- IND and DON significantly differed among barley varieties per location at α=0.05 (Table 2).
- Measures of IND and DON were moderate at both locations. Pearson correlation (r) of IND and DON slightly improved with data transformation of IND to arcIND and DON to logDON. (Table 3).
- Most varieties had higher IND and DON levels in Kimberly than in Aberdeen (Figs. 2 and 3).
- ❖ DON levels of varieties planted in both locations are shown in Fig. 3. The median DON values were 13.2 ppm and 5.5. ppm in Kimberly and Aberdeen, respectively.
- ❖ DON content of most varieties exceeded acceptable levels for malt and food (<1 ppm) and feed (<5 ppm)</p> consumption. There were only two varieties (CDC Copeland and Far15-52A) that consistently had DON
- ❖ We will continue to monitor FHB levels and screen for FHB resistance of spring barley in Aberdeen and
- Disease ratings and weather data will be used to develop FHB prediction models that will aid local growers in managing FHB and DON risk in Idaho.

DON (ppm)

(39 two-rowed malt, 14 two-rowed feed/food, 2 two-rowed checks and 10 six-rowed) screened for FHB resistance in Aberdeen and Kimberly in 2019.

Increased emphasis on screening winter varieties of wheat and barley

DETERMINING FUSARIUM HEAD BLIGHT RESISTANCE OF SPRING BARLEY IN IDAHO

hology and Nematology, Aberdeen, ID

ks before head emergence of the earliest

acroconidia/ml) were applied with a CO₂

were made one week apart starting at head

used to irrigate barley plots from the time

soft dough (Feekes 11.2). The FHB Index

to Univ. of Minnesota DON Testing Lab.

Aberdeen

csine-transformed FHB Index (arcIND)

(FHB) and deoxynivalenol (DON)

correlation (r) of IND and DON slightly

The median DON values were 13.2 ppm

and food (<1 ppm) and feed (<5 ppm)

Far15-52A) that consistently had DON

tance of spring barley in Aberdeen and

ion models that will aid local growers is

ment of Agriculture, under Agreement

essed in this publication are those of the

Wheat & Barley Scab Initiative.

partment of Agriculture.

on at α=0.05 (Table 2).

berdeen (Figs. 2 and 3).

DON. (Table 3).

versity of Minnesota, Department of Plant Pathology, St. Paul, MN

Variety

UT11302-11 UTSB10905-72

YU510-510

Clho 4196 ICB 111809

Aberdeen and Kimberly in 2019.

Fig. 3. Deoxynivalenol content (ppm) of 65 barley varieties

(39 two-rowed malt, 14 two-rowed feed/food, 2 two-rowed

checks and 10 six-rowed) screened for FHB resistance in

Suzette Arcibal Baldwin¹, Belavneh Yimer¹, Thomas Baldwin², Yanhong Dong³ and Juliet Marshall¹

Resistance Rating

Moderately Resistant

IDO1608

MT1491 (HWW

IDO1506 (W)

UICF Grace

UISRG

selections in Kimberly, Idaho, 2019.

4.4 klm

4.7 i-m

11.7 f-I

9.1 h-1

0.8 m

4.3 klm

4.2 klm

8.5 h-1

3.9 klm

7.4 h-m

4.2 klm

Evaluation of Winter Wheat Varieties and Selections for FHB Resistance in Southeast Idaho

Belayneh A. Yimer¹, Suzette A. Baldwin¹, Thomas T. Baldwin², Yanhong Dong³ and Juliet M. Marshall^{4*} ¹University of Idaho, Aberdeen, ID 83210; ²North Dakota State University, Fargo, ND 58108; ³University of Minnesota, St. Paul, MN 55108; and ⁴University of Idaho, Idaho Falls, ID 83402

Introduction

Fusarium head blight (FHB), caused by Fusarium graminearum (Fg), is destructive fungal disease of wheat that causes significant yield losses and quality reduction by producing mycotoxins, mainly deoxynivalenol (DON). FHB and DON have become emerging issues in irrigated wheat fields of Idaho environmentally friendly. Hence, there is a need to conduct anticipatory research to identify wheat varieties and advanced breeding lines that are

Hard Winter Wheat

Table 2. FHB index, DON content and Fusarium damaged kernels (FDK) in hard winter wheat varieties and

3.4 I

33.1 db

0.7 i

3.0 i

2.2 i

13.1 ghi

1.5 i

WA8252 (W)

Utah 100

SY Clearsto

UI Bronze Jade (W

LCS Yeti

Materials and Methods

- Location: ARS field station, Kimberly, Idaho
- Varieties: 40 hard winter wheat and 46 soft white winter wheat varieties evaluated Planting Date: 22 October 2018
- Plots: each variety planted in two head rows in two replications
- Fusarium graminearum Isolates and Inoculation
- A mixture of 10 Fg isolates collected from Idaho Corn spawn: spread three weeks before anthesis at a rate of 50g/plot (1 plot = 2 head rows) Conidia: 100,000 spores/ml @ early anthesis using CO2 sprayer with 8003 VS nozzles at 1 ft/s at 40 psi
- A supplemental misting system was installed to create a conducive environment
- for disease infection FHB rating: soft dough (Feeks 11.2) or 21 days after anthesis

17.5

12.5

5.5 i-m

13.0 e-h

25.0 abc

8.4 h-l

18.3 c-f

31.5 a

21.8 bcd

8.9 h-l

21.0 bcd

<0.0001

2.42

10.95

32.70

0.2056

2.2 i

16.0 f-i

17.0 f-i

2.6 i

9.5 hi

46.5 cda

20.3 e-i

- Sample size: FHB severity was recorded from 30 heads per plot
- Disease Index = (% severity x % incidence)/100
- FDK: Fusarium damaged kernels measured based on a scale developed by Engle, De Wolf & Lipps
- Harvest date: 18 September 2019 DON Analysis: University of Minnesota DON testing lab
- Data Analysis: PROC GLIMMIX in SAS 9.4

Resistance rating was calculated using the formula: DISK = (0.3DON + 0.2Incidence + 0.2Severity + 0.3FDK) Where D = DON I = Incidence S = Severity K = FDK

Resistance Rating	DISK
Moderately Resistant	0 - 10
Moderately Susceptible	10.1 - 18
Susceptible	18.1 - 30
Very Susceptible	> 30

Table 3. Resistance reaction of soft white winter wheat varieties and selections to FHB in Kimberly, Idaho, 2019 Table 1. Resistance reaction of hard winter wheat varieties and selections to FHB in Kimberly, Idaho, 2019.

Resistance Rating	#Varieties	Percent
Moderately Resistant	6	13
Moderately Susceptible	16	35
Susceptible	13	28
Very Susceptible	11	24

	FHB Index	DON	FDK
Variety	(%)	(ppm)	(%)
UIL 17-6451 (CL+)	0.00 gh	5.6 jk	0.5
Stingray CL+	0.37 gh.	8.3 g-k	3.2 jkl
OR2X2 CL+	0.50 gh.	3.8 k	9.3 i-1
LCS Hulk	0.62 gh	10.9 f-k	18.0 h-1
Jasper	0.67 gh.	6.4 ijk	10.4 i-1
UI Magic	0.70 gh.	12.1 o-k	11.3 i-1
Norwest Tandem	0.85 gh.	18.2 d-j	35.0 d-I
Appleby CL+	0.92 gh	8.8 f-k	13.8 i-l
Purl	1.09 gh	16.0 d-k	21.4 f-l
SY Raptor	1.14 gh	15.2 d-k	13.0 i-l
SY Assure	1.15 gh	11.0 f-k	16.0 h-1
UIL 17-6834 (CL+)	1.17 gh	20.7 d-g	45.0 c-h
LCS Sonic	1.20 gh	30.8 abc	27.0 e-1
LCS Artdeco	1.22 gh	11.4 f-k	50.5 b-f
WB1376CLP	1.75 gh	8.7 f-k	2.1 kl
UIL 17-6268 (CL+)	1.85 gh	10.0 f-k	20.3 f-l
UIL 15-72223	2.00 gh.	13.6 d-k	7.5 i-l
LCS Drive	2.10 fgh.	12.0 e-k	81.5 a
UIL 17-6333 (CL+)	2.20 fgh.	21.0 d-g	21.6 f-l
Stephens	2.32 fgh	20.6 d-h	49.5 b-g
VI Bulldog	2.35 fgh.	10.0 f-k	15.3 h-1
SY Ovation	2.57 fgh.	18.9 d-I	18.8 g-1
WB456	2.57 fgh	11.7 f-k	2.2 kl

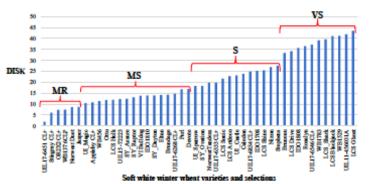


Figure 2. Reactions of soft white winter wheat varieties and selections to FHB in Kimberly, Idaho, 2019. DISK rating incorporates DON data.

Table 4. FHB index, DON content and FDK in soft white winter wheat varieties and selections in Kimberly, Idaho, 2019

Figure 1. Resistance reaction of hard winter wheat varieties and selections to FHB in Kimberly, Idaho, 2019.

DISK rating incorporates DON data.

- Only 22 (16 hww and 6 sww) varieties or selections, accounting 25% of the total varieties evaluated, had a moderately resistant reaction to FHB. 36 varieties or selections (12 hww and 24 sww), accounting 42% of the total varieties evaluated, were either susceptible or highly susceptible to FHB.
- Only one hard winter wheat variety, Deloris, had DON content that is below the threshold level of 1 ppm.
- There was no correlation between the various disease parameters (incidence, severity and index) and DON content Overall, hard winter wheat varieties had better resistance to FHB than soft white winter wheat varieties.

ACKNOWLEDGEMENT AND DISCLAIMER This material is based upon work supported by the U.S. Department of Agriculture, under Agreement No. 58-2050-8-013. This is a cooperative project with the U.S. Wheat & Barley Scab Initiative. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture

10ARS191-3 ■ Aberdeen 2IK14-8413 Kimberly 2IM14-8212 AAC Connect = AAC Synergy === ABI Eagle ABI Growler ABI Voyager ____ AC Metcalfe AD120341 CDC Bow CDC Copeland = CDC Fraser == CDC Meredith Conlon Conrad DH120058 DH120285 Explorer Far15-52A === Full Pint Gemcraft Golden Promise === Harrington Hockett **Klages** LCS Genie LCS Odyssey Manta Merem Merit 57 Moravian 179 ND Genesis Two-rowed feed/food Aberdeen Altorado === Kimberly BZ512-319 Champion Claymore ____ Goldenhart Idagold II Kardia Lenetah = Otis Transit Xena Chevron Six-rowed Goldeneye Aberdeen Millennium PI383933 Kimberly Ouest = Stander Tradition

DON (ppm)

Two-rowed malt

Two-rowed checks

Kimberly

Management of FHB and DON Using Fungicides and Host Resistance in Hard Spring Wheat in Idaho

Belayneh A. Yimer¹, Suzette Arcibal Baldwin¹, Yanhong Dong² and Juliet M. Marshall^{3*}

¹University of Idaho, Aberdeen, ID 83210; ²University of Minnesota, St. Paul, MN 55108; and ³University of Idaho, Idaho Falls, ID 83402

asarium head blight (FHB) and deoxymivalenol (DON) have become emerging issues in irrigated wheat fields of the Intermountain West/Idaho. The threat of FHB and DON is increasing with an increase in corn production in the region/state. Hence, there is a need to develop anagement practices that can minimize the impact of FHB on grain yield and quality, and practices that can keep DON content in grains below the threshold level. Currently, there are a few triazole fungicides (e.g. Prosaro and Caramba) that are established for FHB and DON management. Testing additional fungicides such as the new DMIpydiflumetofen) for FHB and DON management may provide additional choices for producers and benef tringicide resistance management.

Evaluate the integrated effects of fungicide treatment and genetic resistance on FHB and DON in irrigated hard spring wheat in Idaho, with emphasis on a new fungicide Miravis Ace (IM).

Compare the efficacy of Miravis Ace when applied at heading or at anthesis to that of standard anthesis application of Prosaro or Caramba

Integrated Management Study Table 1. Varieties used in the Integrated Management Stud

Variety	Class	Resistance	Flowering	Rating
Kelse	Hard red	Susceptible (S)	July 8	July 30
LCS Star	Hard white	Moderately	July 8	July 30
IDO1602S	Hard white	Susceptible (MS)	July 8	July 30
Rollag	Hard red	Moderately Presistant (MP)	July 8	July 30

Fung	zicide	Rate	Timing
UT	Untreated check		
PA	Prosaro	6.5 fl oz/A	Anthesis
MA	Miravis Ace	13.7 fl oz/A	Anthesis
ΜН	Miravis Ace	13.7 fl oz/A	Heading
PN	Prosaro, non-inoculated (NI)	6.5 fl oz/A	Anthesis

Application of Miravis Ace or combined applications of

All fungicide treatments reduced DON content below the

At a low FHB risk, application of fungicides did not have

hearth FHB inches of diadex.

significant effects on yield.

threshold level.

Miravis Ace will have and Caramba was effective in

Table 3. Effect of variety and fungicide treatment on yield, test weight (TW), Fusarium-damaged kennels (FDK) and decxynivalenol (DON)

Variable	Yield (bu/A)	TW (lb/bu)	FDK (%)
Variety	<u> </u>	~~	
Kelse	102.5 b	59.9 c	0.6 a
1001602S	99.5 b	58.6 b	1.5 b
LCS Star	109.3 a	57.7 d	0.7 b
Rollag	104.9 ab	61.0 a	0.1 €
P-value	0.0391	<.0001	<.0001
ungicide Treatment			
UT Untreated check	100.5 b	58.6 c	1.2 a
PA Prosuro at A	104,2 a	59.6 b	0.6 be
MA Miravis Ace at A	105.8 a	60.0 a	0.4 €
MH Miravis Ace at H	104.7 a	59.5 b	0.5 be
PA Prosaro at A, non-inoculated	106.4 a	59.4 b	0.6 be
UN Untreated, non-inoculated	102.7 ab	58.8 c	1.1 a
P-value	0.0303	<.0001	<.0001

Conclusion

 All fungicide treatments significantly reduced FHB incidence, index, FDK, DON, and increased yield and TW compared to untreated checks Among fungicides, Miravis applied at anthesis resulted in the lowest incidence, index, and the highest TW. However, yield, FDK and DON did not differ (Table 3).

Varietal Effect:

. Among varieties, the moderately resistant (MR) variety "Rollag" had significantly the lowest incidence, index, FDK and DON, and the highest TW.

The susceptible (S) variety 'Kelse' had the highest disease while lowest yield. LCS Star had the lowest TW (Table 3).

Fungicide x Variety Interaction:

. There was significant FxV interaction for incidence, index, TW and DON, but not for yield and FDK.

All fungicides reduced ▼IM incidence and index significantly compared to the untrested check except on variety "Rollag"

All untreated plots (except Rollag) had DON above the threshold level (1.5 – 2.4 ppm). Application of fungicides of fungicides of funcional functions.

varieties reduced DON below the threshold level (0.5 - 1.0 ppm) except Minute Ace at heading (1.2 - 1.3 ppm) Rollag had the lowest incidence, index, FDK and DON; and application or how did not significantly reduce FHB related parameters on this variety

The use of S (Kelse) and MS (IDO1602S & LCS Star) varieties were not enough to reduce DON boow the Ippm threshold level. Application of Miravis Ace at anthonis on the susceptible and moderately susceptible

rarieties reduces Doller below 1ppm. Application of Miravis Ace at heading was not effective in managing FHB and DON.

The use of MR MMM (Rollag) alone was effective in managing FHB and DON, hence no need of applying fungicides on this variety under Idaho conditions.

Materials and Methods

Location: Aberdeen R & E Center, University of Idaho

Planting Date: 03 May 2019

Experimental Design: RCBD with four replications

Fungicide application: CO2 backpack sprayer with paired 8001 VS nozzles mounted at a 45-degree forward and backward angle, and calibrated at 20 gal/A

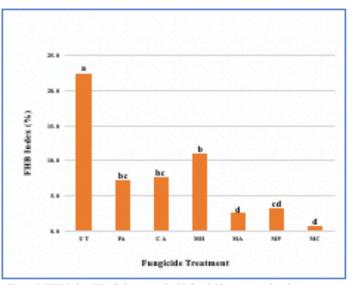
Inoculation concentration: 100,000 spores/ml Inoculation Timing: 24-36 hours after the anthesis fungicide application

Inoculum Application: CO2 sprayer with 8003 VS nozzles at 1 ft/s at 40 psi

FHB rating: soft dough (FGS 11.2)

Sample size: 20 heads per row (from the five center rows) for a total of 100 heads per plot

Harvest date: 18 September 2019


DON Analysis: University of Minnesota DON testing lab

Data Analysis: PROC GLIMMIX in SAS 9.4

Uniform Fungicide Trial (UFT)

Table 4. Effect of fungicides on yield and quality of hard red spring wheat in Idaho, 2019

Fungicide Treatment	Rate	Timing	Yield (bu/A)	TW (lh/bu)	FDK (%)	DON (ppm)
UT Untreated check	_	_	96.2	58.6 od	1.2 a	1.03 a
PA Prosaro	6.5 fl oz/A	Anthesis	92.6	58.9 bcd	0.6 bc	0.35 b
CA Caramba	13.5 fl oz/A	Anthesis	92.0	58.3 d	1.0 ab	0.56 b
MH Miravis Ace	13.7 fl oz/A	Heading	100.3	59.6 ab	1.0 ab	0.93 a
MA Miravis Ace	13.7 fl oz/A	Anthesis	99.6	59.1 abc		0.49 b
MP Miravis Ace + Prosaro	13.7 fl oz/A + 6.5 fl oz/A	Anthesis (A) A + 7 days	97.5	59.4 ab	0.5 c	0.39 bc
MC Miravis Ace + Caramba	13.7 fl oz/A + 13.5 fl oz/A	Anthesis (A) A + 7 days	94.5	59.7 a	0.5 c	0.15 c
~~~		P-value	0.157ns	0.0118*	0.003*	<.0001*

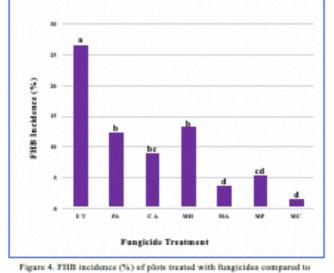
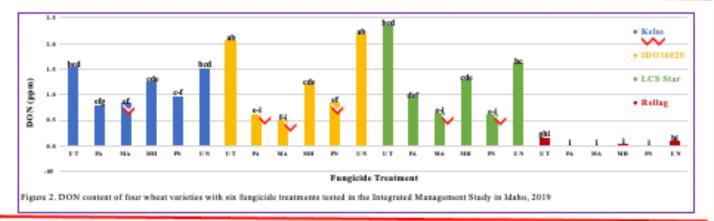



Figure 3. FHB index (%) of plots treated with fungicides compared to the the untreated check in the UFT in Idaho, 2019

untreated check in the UFT in Idaho, 2015

- Fungicide treatment had significant offect on all FRB and best parameters except yield
- . Untreated check plots had the highest incidence, index, FDK and DON
- . Combined application of Miravia Ace with Caramba resulted in the lowest incidence, index, FDK and DON, but was not statistically significant from application of Miravis Ace at arribesis (Tobbe ined application of Miravia with Presarcalone (Table 4)

This material is based upon work supported by the U.S. Department of Agriculture, under Agreement No. 58-2050-8-913. This is a cooperative project with the U.S. Wheat & Barley Scab Initiative. Any opinions, findings, conclusions, or dations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the

FUSARIUM HEAD BLIGHT RESISTANCE OF SPRING BARLEY IN IDAHO

Aberdeen, ID;

replications

hology and Nematology, Aberdeen, ID

versity of Minnesota, Department of Plant Pathology, St. Paul, MN

ibal Baldwin¹. Belavneh Yimer¹. Thomas Baldwin², Yanhong Dong³ and Juliet Marshall¹

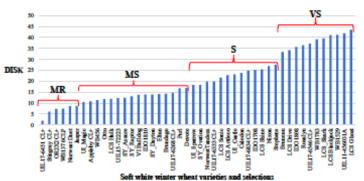
Resistance in Southeast Idaho

Dong³ and Juliet M. Marshall^{4*} ³University of Minnesota, St. Paul, MN 55108;

aterials and Methods

 Resistance rating was calculated using the formula: DISK = (0.3DON + 0.2Incidence + 0.2Severity + 0.3FDK) Where D = DON I = Incidence S = Severity K = FDK

	plot = 2 head rows)	Resistance Rating	DISK
-	ronment	Moderately Resistant	0 - 10
		Moderately Susceptible	10.1 - 18
		Susceptible	18.1 - 30
	Engle, De Wolf & Lipps	Very Susceptible	> 30

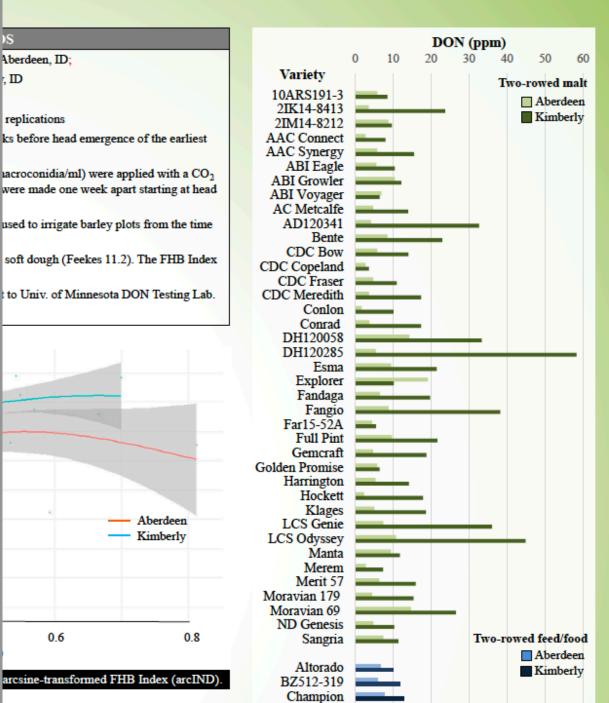

Soft White Winter Wheat

reaction of soft white winter wheat varieties and selections to FHB in Kimberly, Idaho, 2019.

tion of soft white white wheat varieties and selections to I IID in Ethnoetry, I				
	#Varieties	Percent		
	6	13		
	16	35		
	13	28		
	11	24		
	••	2.		

DON content and FDK in soft white winter wheat varieties and selections in Kimberly, Idaho, 2019

OON content and FDK in soft white winter wheat varieties and selections in Kimberly, Idah							
ndex i)	DON	FDK	ty	F	IB Index		
	(ррш)	(%)		(%)			
gh	5.6 jk	0.5	est Duet	2.62 fgh			
gh.	8.3 g-k	3.2 jkl	1	2.69 fgh			
gh	3.8 k	9.3 i-l		2.84 fgh.			
gh	10.9 f-k	18.0 h-1	Shark	3.67 fgh.			
gh	6.4 ijk	10.4 i-1	708	3.92 fgh			
1	12.1 o-k	11.3 i-1		4.00 fgh.			
1	18.2 d-j	35.0 d-I	ayton	4.37 e-h			
h	8.8 f-k	13.8 i-l	1-456031A	5.03 d-h			
gh	16.0 d-k	21.4 f-l	810	5.17 d-h			
h	15.2 d-k	13.0 i-l	783	5.42 d-h			
gh	11.0 f-k	16.0 h-1	808	5.92 d-h			
gh.	20.7 d-g	45.0 c-h	te .	6.50 d-h			
gh.	30.8 abc	27.0 e-1	Blackjack	7.10 c-h			
gh.	11.4 f-k	50.5 b-f	amow	7.42 c-h			
gh	8.7 f-k	2.1 kl	lage	7.68 c-h			
gh.	10.0 f-k	20.3 f-l	STALL STALL	9.59 c-g			
jh.	13.6 d-k	7.5 i-l	Shine	10.72 c-f			
fgh	12.0 e-k	81.5 a	529	10.75 c-f			
fgh.	21.0 d-g	21.6 f-l	ym.	12.75 cdo			
fgh	20.6 d-h	49.5b-g	stle	13.67 cd			
jh.	10.0 f-k	15.3 h-1	Ghost	15.32 c			
gh	18.9 d-I	18.8 g-1	opia	30.92 ъ			
ф	11.7 f-k	2.2 kl	7-6546 (CL+)	56.39 a			
			F (0.05)	⊲0.0001	_		



e 2. Reactions of soft white winter wheat varieties and selections to FHB in Kimberly, Idaho, 2019. rating incorporates DON data.

upported by the U.S. Department of Agriculture, under Agreement No. 58-2050-8-013. This is a heat & Barley Scab Initiative. Any opinions, findings, conclusions, or recommendations

se of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture

Claymore ____

Goldenhart Golf

Idagold II Julie

Kardia

Lenetah =

Otis

Xena ===

Ouest ____

Transit

Chevron

Goldeneye

Millennium

PI383933

Stander

Tradition

Clho 4196 ICB 111809

UT11302-11 UTSB10905-72

YU510-510

(FHB) and deoxynivalenol (DON) on at α =0.05 (Table 2).

Aberdeen

correlation (r) of IND and DON slightly DON. (Table 3). berdeen (Figs. 2 and 3).

The median DON values were 13.2 ppm and food (<1 ppm) and feed (<5 ppm) Far15-52A) that consistently had DON

tance of spring barley in Aberdeen and

ion models that will aid local growers in

nent of Agriculture, under Agreement Wheat & Barley Scab Initiative. ssed in this publication are those of the partment of Agriculture.

Fig. 3. Deoxynivalenol content (ppm) of 65 barley varieties (39 two-rowed malt, 14 two-rowed feed/food, 2 two-rowed checks and 10 six-rowed) screened for FHB resistance in Aberdeen and Kimberly in 2019.

Six-rowed

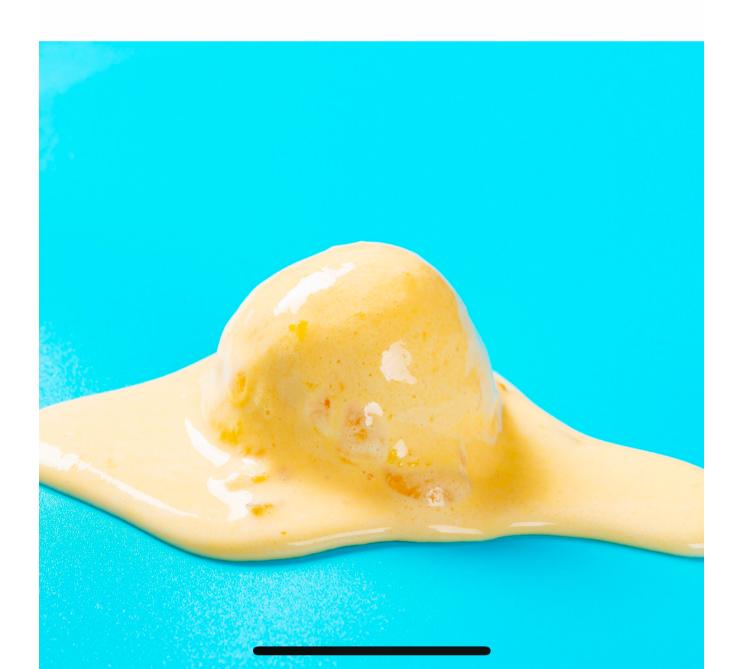
Aberdeen

Kimberly

Kimberly

Two-rowed checks

7:56 **√** HOT CAKE



Another Victim of Global Warming: The Great British Bake Off

Increasing summer temperatures are proving a menace to butter, chocolates, and baked Alaska.

KATE YODER

12.05.20 08:12 AM

Natural Disasters
Environmental Damage
Food Insecurity
Social Unrest
Increased Crime

Increased Crop stress
Change in crop response to pathogens
Pathogen / microbial response
to CO2
to temperature
to moisture

ACKNOWLEDGEMENTS

University of Idaho

Suzette M. Arcibal

Dr. Belayneh Yimer

Tod Shelman

Linda Jones, Martha Carillo

Dr. Jianli Chen

Dr. Kaitlyn Bissonnette

University of Minnesota

Dr. Yanhong Dong

Dr. Phil Bregitzer

Dr. Kathy Klos

Kathy Satterfield

Chris Evans

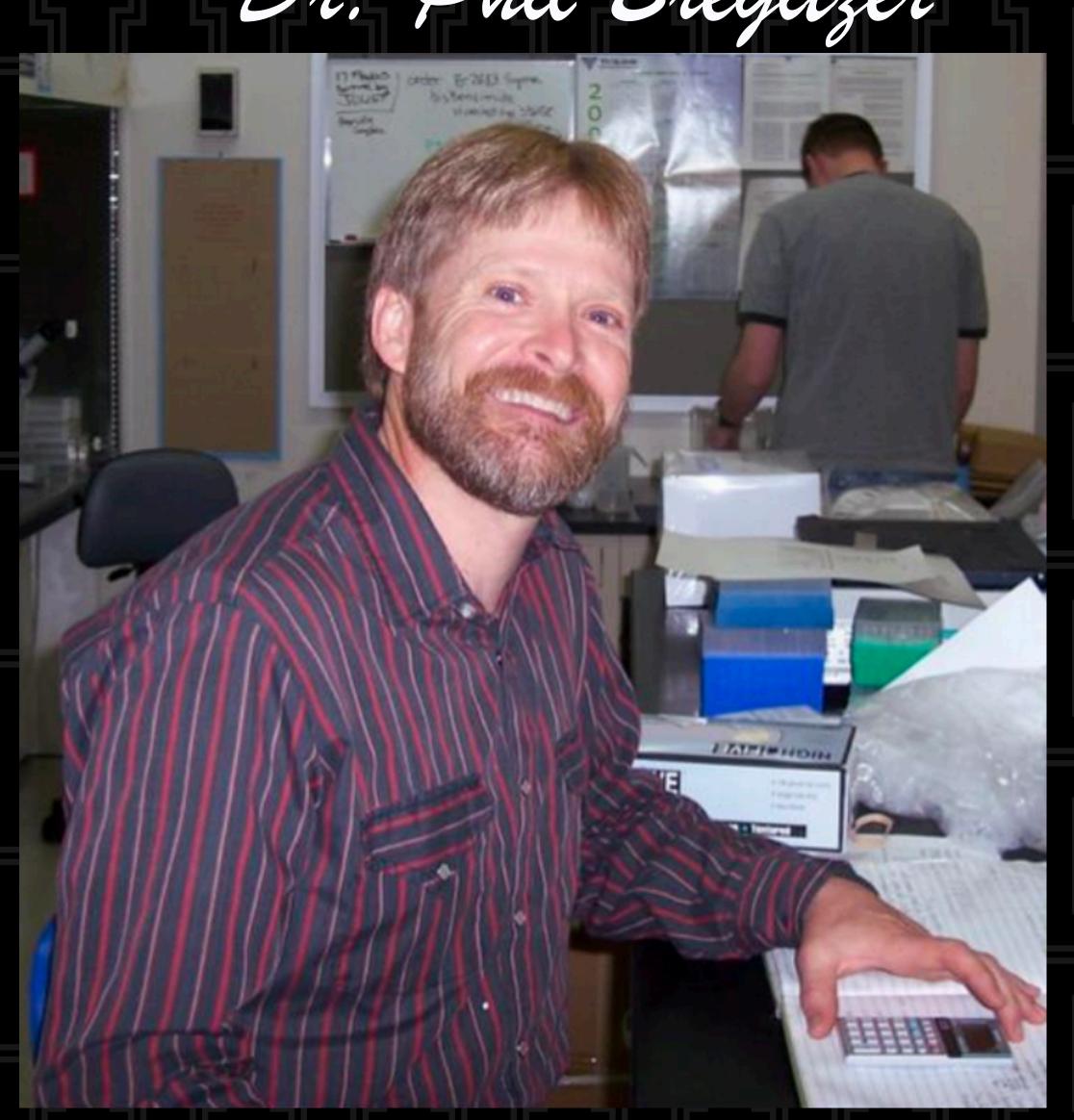
Ohio State University

Dr. Pierce Paul

Dr. Jorge Salgado

Kansas State University

Dr. Erick de Wolfe


North Dakota State University

Dr. Andrew Friskop

Dr. Tom Baldwin

