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A B S T R A C T

Worldwide, while Fusarium graminearum is the main causal species of Fusarium head blight (FHB) in small-grain
cereals, a diversity of FHB-causing species belonging to different species complexes has been found in most
countries. In the U.S., FHB surveys have focused on the Fusarium graminearum species complex (FGSC) and the
frequencies of 3-ADON, 15-ADON, and nivalenol (NIV) chemotypes. A large-scale survey was undertaken across
the state of North Carolina in 2014 to explore the frequency and distribution of F. graminearum capable of
producing NIV, which is not monitored at grain intake points. Symptomatic wheat spikes were sampled from 59
wheat fields in 24 counties located in three agronomic zones typical of several states east of the Appalachian
Mountains: Piedmont, Coastal Plain, and Tidewater. Altogether, 2197 isolates were identified to species using
DNA sequence-based methods. Surprisingly, although F. graminearum was the majority species detected, species
in the Fusarium tricinctum species complex (FTSC) that produce “emerging mycotoxins” were frequent, and even
dominant in some fields. The FTSC percentage was 50–100% in four fields, 30–49% in five fields, 20–29% in five
fields, and < 20% in the remaining 45 fields. FTSC species were at significantly higher frequency in the Coastal
Plain than in the Piedmont or Tidewater (P < .05). Moniliformin concentrations in samples ranged from 0.0 to
38.7 μg g−1. NIV producing isolates were rare statewide (2.2%), and never> 12% in a single field, indicating
that routine testing for NIV is probably unnecessary. The patchy distribution of FTSC species in wheat crops
demonstrated the need to investigate the potential importance of their mycotoxins and the factors that allow
them to sometimes outcompete trichothecene producers. An increased sampling intensity of wheat fields led to
the unexpected discovery of a minority FHB-causing population.

1. Introduction

Fusarium head blight (FHB) is a potentially devastating disease of
small grain cereals worldwide. The disease is caused by several species
in the genus Fusarium whose coexistence in the field is common (Ferrigo
et al., 2016). The relative incidence and abundance of Fusarium species
in wheat tissues may be dynamic across seasons (Köhl et al., 2007).

FHB-causing species are grouped into species complexes (Aoki et al.,

2014; O'Donnell et al., 2013). Globally, most FHB is caused by members
of the Fusarium graminearum species complex (FGSC) (Ferrigo et al.,
2016; Starkey et al., 2007), which produce trichothecenes including
deoxynivalenol (DON), nivalenol (NIV) and the recently discovered NX
toxins (Varga et al., 2015). Members of the FGSC are in turn classified
in the broader Fusarium sambucinum species complex (FSAMSC) along
with other trichothecene producers such as F. poae, F. sporotrichioides,
and F. armeniacum (O'Donnell et al., 2013).
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DON producers predominate in many countries, but NIV producers
are more frequent in others. DON-producing Fusarium strains are fur-
ther subdivided into 3-acetyldeoxynivalenol (3-ADON) and 15-acet-
yldeoxynivalenol (15-ADON) chemotypes based on differences in the
trichothecene biosynthesis gene TRI8 (Alexander et al., 2011). Outside
North America, a north-south distinction has been observed in the
European F. graminearum population, with 3-ADON isolates pre-
dominating in northern Europe and 15-ADON isolates predominating in
central and southern Europe (Pasquali et al., 2016; Yli-Mattila et al.,
2013). The majority of F. graminearum genotypes originating from small
grains were of the 15-ADON chemotype in Germany, Austria, and
portions of Russia (Yli-Mattila, 2010); the UK (Jennings et al., 2004);
Denmark (Nielsen et al., 2012); Argentina (Reynoso et al., 2011); and
southern Brazil (Astolfi et al., 2011). However, the 3-ADON type is
common in Norway (Aamot et al., 2015), Poland (Stępień et al., 2008),
Finland and northwestern Russia as well as the Russian Far East (Yli-
Mattila et al., 2009), the middle and lower Yangtze River Valley of
China (Zhang et al., 2010), and northern Japan (Suga et al., 2008). NIV
producers were found to be dominant or very common in Iran (Haratian
et al., 2008; Malihipour et al., 2012), Korea (Lee et al., 1986), western
Japan (Nakajima and Yoshida, 2007), Nepal (Desjardins et al., 2004),
and China's upper Yangtze Valley (Zhang et al., 2010).

In North America, 15-ADON has historically been the most common
among the trichothecene chemotypes, but there are some regional
differences. For example, the introduction of a novel genetic population
led to a rapid increase in 3-ADON frequencies in some parts of Canada
and the northern U.S. (Gale et al., 2007; Puri and Zhong, 2010; Ward
et al., 2008). In Canada, trichothecene chemotype distributions and
population dynamics among F. graminearum are characterized by two
distinct longitudinal clines suggesting as yet unknown regional differ-
ences in the adaptive landscape (Kelly et al., 2015). In addition, F.
graminearum that produce the novel type A trichothecene NX2 have
recently been observed at relatively low frequencies in southern Canada
and the northern U.S., and many of these strains belong to a novel
population that may be endemic to this region (Kelly et al., 2016; Kelly
and Ward, 2018; Liang et al., 2014). In a survey of FHB-causing isolates
collected from various eastern states in the 1990s and 2000s, Louisiana
yielded a high proportion of F. graminearum strains producing NIV or 3-
ADON as well as NIV-producing F. asiaticum isolates, but only 15-ADON
strains were found in the states of Illinois, Indiana, Kansas, Nebraska,
and Ohio (Gale et al., 2011).

In the eastern U.S., a 2006 survey found low F. graminearum che-
motype diversity in FHB-symptomatic spikes from 39 commercial
wheat fields in New York, Pennsylvania, Maryland, Virginia, Kentucky,
and North Carolina (Schmale et al., 2011). In New York, 3-ADON
strains comprised 15% of isolates across all fields, and 45% in one field,
while in the other states they were 0.5–8% of all isolates. In North
Carolina, NIV strains were present as a minority (3%–22% of isolates)
in three of the five fields sampled, but only one 3-ADON strain was
detected out of 194 isolates genotyped (Schmale et al., 2011).

The relative frequencies of Fusarium trichothecene chemotypes in
cereal fields are of practical importance. For example, in the USA, grain
purchasers generally do not test loads of grain for NIV. There is evi-
dence that NIV is more toxic to mammals than DON (Cheat et al., 2015;
Minervini et al., 2004), while with respect to plants, Malihipour et al.
(2012) suggested there is a gradient of aggressiveness, with 3-ADON
producers being most aggressive to plants, followed by 15-ADON pro-
ducers, and then NIV producers. In addition, trichothecene chemotype
diversity among F. graminearum strains in North America has been a
useful marker for genetic populations that differ in aggressiveness,
growth and fitness characteristics, gene content, and other genomic
features indicating they possess unique adaptations for use in exploiting
the agroecosystem (Foroud et al., 2012; Kelly and Ward, 2018; Puri and
Zhong, 2010; Spolti et al., 2014; Ward et al., 2008).

With respect to other FHB-causing species complexes, within the
Fusarium tricinctum species complex (FTSC), F. avenaceum is the globally

most important FHB-causing species, while F. acuminatum is also found
sporadically (Aoki et al., 2014; Bottalico and Perrone, 2002). These
species do not produce trichothecenes, and instead produce what have
been referred to as “emerging mycotoxins,” in particular enniatins,
moniliformin, and beauvericin (Beccari et al., 2019; Jestoi, 2008;
Logrieco et al., 1998; Logrieco et al., 2002; Yli-Mattila et al., 2002).
Outside North America, the FTSC has historically been important in
FHB of cereals in northern Europe and Russia (Yli-Mattila, 2010). FTSC
species were common in oat and barley grain samples from central and
northwestern Russia (Stakheev et al., 2016); various cereals in Norway
(Kosiak et al., 2003), Finland (Yli-Mattila et al., 2004), and Sweden
(Lindblad et al., 2013); barley, durum and common wheat in France
(Ioos et al., 2004); spring wheat in the Mexican highlands (Cerón-
Bustamante et al., 2018); oats and barley from South Africa (Rabie
et al., 1986); and in wheat and barley crops in New Zealand (Cromey
et al., 2001).

It is not fully understood which factors determine the balance of
Fusarium species of different complexes when all are competing in the
same environment, although temperature and moisture are thought to
be important influences that can favor one complex or another (Ferrigo
et al., 2016). Within-season weather influences may play a role by af-
fecting respective timing of spore liberation of competing species; for
example, there is evidence that secondary metabolites from the more
weakly pathogenic species F. avenaceum and F. acuminatum are favored
when infections occur somewhat later in the anthesis period, as com-
pared to F. graminearum which infects aggressively any time from 0 to
9 days after early anthesis (Beccari et al., 2019).

In North America, there have been only a few surveys of FHB-
causing strains that examined in detail the incidence of non-FGSC
species, and most were not in the U.S. Several Canadian surveys have
detected a range of FSAMSC and FTSC species in grain. Among barley
and wheat spikes grown in Prince Edward Island in 1982–1983, fre-
quencies of 25% F. graminearum, 24% F. poae, 15% F. avenaceum, and
7% F. culmorum were found, with lower levels of F. sporotrichoides, F.
equiseti, and F. acuminatum (Sturz and Johnston, 1985). A 1985 survey
of Manitoba wheat found the majority of samples contained F. grami-
nearum, F. sporotrichioides, and F. equiseti, while nearly half contained F.
poae, F. acuminatum, and F. avenaceum (Abramson et al., 1987). In grain
samples from three Canadian prairie provinces in the 1990s and 2010,
F. graminearum, F. culmorum, and F. avenaceum were the most fre-
quently isolated fusaria in rye and wheat samples, while F. poae and F.
sporotrichioides were more commonly encountered in oat samples (Clear
and Patrick, 2000; Gräfenhan et al., 2013). In samples collected from
six Kentucky wheat fields, four spikes from one field yielded a total of
two F. graminearum isolates and five FTSC isolates (three of which were
F. acuminatum and F. reticulatum) (Bec et al., 2015). In southern Mexico,
FSAMSC strains formed the majority in one state but FTSC strains
predominated in an adjacent state (Cerón-Bustamante et al., 2018).

The aim of the present study was to intensively survey the FHB-
causing population in North Carolina wheat, because previous surveys
that included North Carolina FHB-causing isolates (Gale et al., 2011;
Schmale et al., 2011; Walker et al., 2001) either involved very small
samples or lacked the ability to distinguish members of the FGSC from
other species. Moreover, as two of those studies detected the presence
of NIV-producing strains in North Carolina, we wanted to determine
whether NIV producers were distributed throughout the state, or were
concentrated in higher frequencies in a specific zone. In this survey, we
sought to deepen our understanding by intensively sampling FHB-
causing isolates from a geographically diverse range of fields in the
three basic small-grain cereal production environments of the south-
eastern Atlantic seaboard: the Piedmont, Coastal Plain, and Tidewater.
We expected that F. graminearum would account for the entire sample or
nearly so, and that there would be a small minority of NIV-producing
strains. We were surprised to discover that in some fields, a large
proportion or even a majority of strains isolated from FHB-symptomatic
wheat spikes were non-trichothecene producers belonging to the FTSC.
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Table 1
Percentages of four Fusarium head blight-causing species complexes in a total of 2197 Fusarium isolates collected from 59 wheat fields sampled in three agronomic
zones of North Carolina in 2014.

Zone Field County Nbr of isolates Percent of samplea

FSAMSC FTSC FFSC FIESC NIV chemotypec

% CIb

Piedmont
4 Union 22 81.8 13.6 3.8–38.5 4.6 0.0 0.0

30 Rowan 18 61.1 5.6 0.7–33.3 27.8 5.6 0.0
31 Rowan 47 93.6 0.0 – 4.3 2.1 2.1
32 Davie 66 98.5 1.5 0.2–9.7 0.0 0.0 0.0
33 Davie 19 63.2 36.8 17.4–61.8 0.0 0.0 0.0
34 Davie 31 87.1 12.9 4.5–31.6 0.0 0.0 0.0
35 Davie 18 94.4 5.6 0.8–29.7 0.0 0.0 0.0
36 Davidson 61 98.4 0.0 – 1.6 0.0 0.0
37 Davidson 24 95.8 4.2 0.6–23.6 0.0 0.0 0.0
44 Wake 51 100.0 0.0 – 0.0 0.0 7.8
45 Wake 25 88.0 8.0 1.7–29.9 4.0 0.0 0.0
46 Stokes 13 61.5 30.8 10.5–62.9 7.7 0.0 0.0
47 Forsyth 54 100.0 0.0 – 0.0 0.0 0.0
48 Forsyth 43 95.4 0.0 – 4.7 0.0 4.7
58 Cleveland 14 50.0 50.0 24.3–75.7 0.0 0.0 7.1
59 Cleveland 9 67.0 33.3 10.5–68.1 0.0 0.0 0.0

Piedmont total 515 90.5 6.6 4.4–9.9 2.5 0.4 1.6
Coastal Plain

1 Pitt 54 98.2 0.0 – 1.9 0.0 1.9
5 Lenoir 50 96.0 2.0 0.3–13.6 0.0 2.0 0.0
6 Lenoir 20 95.0 0.0 – 0.0 5.0 0.0
7 Lenoir 28 82.1 10.7 2.9–32.9 3.6 3.6 3.6

11 Columbus 35 97.1 0.0 – 0.0 2.9 0.0
12 Columbus 43 100.0 0.0 – 0.0 0.0 4.7
13 Columbus 34 94.1 5.9 1.4–21.7 0.0 0.0 2.9
14 Bladen 41 90.2 2.4 0.3–16.2 7.3 0.0 12.2
15 Bladen 65 84.6 7.7 2.8–19.4 7.7 0.0 7.7
16 Sampson 34 97.1 2.9 0.4–17.6 0.0 0.0 0.0
17 Sampson 33 90.9 9.1 2.7–26.3 0.0 0.0 6.1
18 Sampson 44 97.7 0.0 – 2.3 0.0 2.3
19 Robeson 24 91.7 8.3 2.0–29.1 0.0 0.0 4.2
20 Robeson 33 93.9 0.0 – 6.1 0.0 3.0
21 Robeson 25 72.0 24.0 9.8–47.9 4.0 0.0 4.0
22 Wayne 24 70.8 29.2 13.5–52.0 0.0 0.0 0.0
23 Johnston 36 75.0 25.0 12.6–43.5 0.0 0.0 0.0
24 Wayne 15 93.3 6.7 1.0–34.1 0.0 0.0 0.0
25 Harnett 40 67.5 32.5 18.7–50.2 0.0 0.0 0.0
26 Harnett 17 41.2 58.8 33.2–80.4 0.0 0.0 5.9
27 Johnston 19 36.8 63.2 38.2–82.6 0.0 0.0 0.0
28 Johnston 43 86.1 4.7 1.0–19.0 9.3 0.0 2.3
29 Johnston 41 85.4 4.9 1.0–19.8 9.8 0.0 2.4
38 Craven 54 94.4 0.0 – 5.6 0.0 3.7
39 Craven 51 74.5 19.6 9.7–35.7 5.9 0.0 0.0
40 Craven 46 52.2 47.8 32.4–63.7 0.0 0.0 4.4
41 Jones 47 72.3 27.7 15.8–43.9 0.0 0.0 0.0
42 Jones 43 95.4 4.7 1.1–17.7 0.0 0.0 11.6
43 Jones 42 7.1 92.9 78.7–97.9 0.0 0.0 0.0

Coastal Plain total 1081 81.7 15.4 12.8–18.3 2.6 0.4 3.1
Tidewater

2 Washington 16 100.0 0.0 – 0.0 0.0 0.0
3 Beaufort 40 97.5 0.0 – 2.5 0.0 0.0
8 Washington 48 97.9 0.0 – 2.1 0.0 0.0
9 Washington 52 78.9 17.3 8.2–32.9 3.9 0.0 0.0

10 Beaufort 31 100.0 0.0 – 0.0 0.0 0.0
49 Chowan 50 96.0 4.0 0.9–15.5 0.0 0.0 0.0
50 Chowan 56 96.4 1.8 0.2–12.3 1.8 0.0 3.6
51 Chowan 46 84.8 15.2 6.9–30.4 0.0 0.0 2.2
52 Pasquotank 47 80.9 19.2 9.5–34.7 0.0 0.0 2.1
53 Pasquotank 35 74.3 25.7 13.0–44.5 0.0 0.0 2.9
54 Perquimans 35 94.3 5.7 1.4–21.2 0.0 0.0 0.0
55 Perquimans 40 92.5 7.5 2.3–22.2 0.0 0.0 0.0
56 Perquimans 50 94.0 6.0 1.8–18.2 0.0 0.0 4.0
57 Perquimans 55 89.1 7.3 2.4–20.2 3.6 0.0 0.0

Tidewater total 601 90.7 8.2 5.9–11.2 1.2 0.0 1.2
Total 2197 86.2 11.3 2.2 0.3 2.2

a FSAMSC = Fusarium sambucinum species complex, FTSC = Fusarium tricinctum species complex, FFSC = Fusarium fujikuroi species complex, FIESC = Fusarium
incarnatum-equiseti species complex.

b 95% confidence interval (CI) calculated using Goodman's intervals; see text for details.
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2. Materials and methods

2.1. Sample collection and isolate derivation

Wheat spikes symptomatic for FHB were sampled from 59 com-
mercial fields in 24 North Carolina counties in the 2013–14 growing
season (Table 1). Of the fields, 14 were located in the Tidewater zone,
29 in the Coastal Plain, and 16 in the Piedmont (Fig. 1). The zones
(NCpedia, 2019) are commonly accepted in the mid-Atlantic and
Southeast U.S. as distinct agronomic regions, and for the present pur-
pose, counties that were mainly in one zone were assigned entirely to
that zone (Fig. 1). The goal was to sample three fields in each of the
major wheat-producing counties of the state, but in some of those

counties, only one or two symptomatic fields could be located. North
Carolina experienced low to moderate FHB incidence in 2014, with
occasional severely affected fields. FHB was relatively more frequent in
the Tidewater and Coastal Plain, and less frequent in the Piedmont that
season due to rainfall patterns in April and May (C. Cowger, personal
observations).

During drives along roads through agricultural areas, fields were
chosen for sampling when the winter wheat crops exhibited symptoms
of FHB. All the crops were likely soft wheat, but the varieties of wheat
and the previous crops were unknown. Collection occurred during the
period of 13 and 28 May 2014, corresponding to the dates when
symptoms of spike bleaching were clearly visible and samples could be
gathered across the state. Symptomatic spikes were collected from each

c Nivalenol chemotype of F. graminearum isolates, which are also included under FSAMSC. The vast majority of F. graminearum isolates had the 15-ADON
chemotype; only 8 isolates (0.4%) were of 3-ADON chemotype across entire sample.

Fig. 1. Locations of 59 North Carolina fields in three agronomic zones where FHB-symptomatic wheat spikes were sampled in May 2014. Field numbers correspond
to those in Table 1. Marker diameters are proportional to sample sizes, and marker colors indicate percent of derived isolates belonging to the Fusarium tricinctum
species complex, which produce the “emerging mycotoxins” moniliformin and enniatins, and do not produce trichothecenes.
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field while walking a random path through as large an expanse as
possible. While a sample of at least 30 symptomatic spikes per field was
sought, there were cases in which only smaller numbers could be col-
lected due to infrequency of symptoms.

To isolate Fusarium strains from spikes, one infected spikelet per
spike was surface-disinfected in 2% sodium hypochlorite (bleach) for
1 min, rinsed in sterile water, and plated on a modified Nash-Snyder
Fusarium-selective medium (Schmale III et al., 2006). After 4 to 5 days,
transfers from the resulting culture were made to a quarter-strength
potato dextrose agar (PDA) plate. One single-spored isolate per wheat
spike was chosen for use in the subsequent analysis. That single genetic
individual was grown in potato dextrose broth for 2–4 days on a ro-
tating shaker at 150 rpm. The mycelium was harvested and lyophilized.

DNA was extracted from each lyophilized sample by means of a
simple bead-beating procedure. Approximately 15 mg of lyophilized
mycelium was ground in a 1.5-ml microcentrifuge tube by vortexing for
30 s with 10 nickel-plated lead shot beads. DNA was extracted from the
ground tissue using an EZNA Plant DNA Mini kit (Omega Biotek,
D2485). DNA concentration was determined using a Qubit dsDNA HS
assay kit (ThermoFisher, Q32854).

2.2. Genotyping

Isolate characterization began with PCR assays to amplify two
genes, TRI3 and TRI12, as described in Ward et al. (2002) and Starkey
et al. (2007). TRI3 encodes a 15-O-acetyltransferase (McCormick et al.,
1996) and TRI12 encodes a trichothecene efflux pump (Alexander et al.,
1999); the assays were designed to produce chemotype-specific am-
plicons from the FGSC and closely related species within FSAMSC
lineage 1 (FSAMSC-1, (Kelly et al., 2016). However, a significant
number of isolates processed with the TRI3 and TRI12 primers did not
produce bands of the expected sizes, or produced multiple bands. Be-
cause this suggested that isolates from outside FSAMSC lineage 1 might
be present, a combination of multilocus genotyping (MLGT) and DNA
sequencing were employed for species identification of all isolates.

Species identity and trichothecene type were determined via MLGT
as described previously (Sarver et al., 2011; Ward et al., 2008) using a
50-probe assay that enabled simultaneous identification of 21 FSAMSC-
1 species as well as the 15-ADON, 3-ADON, NIV, and NX trichothecene
types (Garmendia et al., 2018). Isolates that could not be identified by
MLGT were analyzed using partial sequences of the translation elon-
gation factor 1α (TEF1) as described previously (Cerón-Bustamante
et al., 2018). Sequence similarity searches were performed using the
FUSARIUM MLST database (http://www.westerdijkinstitute.nl/
fusarium/), with species identifications based on> 99% similarity be-
tween query and reference sequences. Isolates that produced lower si-
milarity scores in relation to reference sequences were identified to the
level of species complex based on the best sequence matches in FUS-
ARIUM MLST. FUSARIUM MLST results were cross-checked in relation
to the non-redundant nucleotide collection database at NCBI.

2.3. Mycotoxin analyses

To assess mycotoxin content of the samples, the spikes that re-
mained after an isolate had been derived from one spikelet per spike
were utilized. Approximately 30 spikes per field were bulked together
and ground to flour with a Laboratory Mill 3100 (Perten Instruments,
Hägersten, Sweden). One gram of each ground wheat sample was ex-
tracted with 10 ml of an acetonitrile/water mixture (86:14) for 15 min
in a 50 ml Falcon tube with shaking on a horizontal vortex genie. The
mixture was centrifuged for 5 min to pellet the plant material.

To measure trichothecene concentrations, gas chromato-
graphy–mass spectrometry (GC-MS) was used. Five ml of the acetoni-
trile/water extract was purified with a Romer MycoSep cleanup
column. Two ml of the purified extract was dried in a 1-dram vial with
heat under a stream of nitrogen. 100 μl of freshly prepared silylating

reagent (1-(trimethylsilyl)imidazole/chlorotrimethylsilane, 100:1) was
added to the vial and the tube was quickly vortexed to coat the walls
and then incubated for 30 min. 900 μl of isooctane were added to the
vial and briefly vortexed to mix. One ml of water was then added to the
vial to quench the reaction, and the vial was gently shaken until the top
layer was clear. The top organic layer was then transferred to a GC vial
for GC-MS analysis.

GC-MS analyses were performed with an Agilent 7890 chromato-
graph (Wilmington, Delaware) fitted with a HP-5MS column
(Wilmington, Delaware) and products detected with an Agilent 5977
mass spectrometer with an electron impact source operating in selected
ion monitoring (SIM) mode. Samples were introduced with splitless
injection at 150 °C, the temperature was held for 1 min and then the
column was heated at 30 °C/min to 280 °C and then held for 1 min.
Under these conditions, 3,7,15-tri-trimethylsilyl DON is detected at
6.2 min. For quantitation of DON, samples were run in selected ion
monitoring (SIM) mode using ions 512, 422, and 392, 295, 259, and
235. DON was quantified using a standard curve of 3,7,15-tri(tri-tri-
methylsilyl) DON derivatives prepared in the same way.

To assess non-trichothecene mycotoxins not detected by GC-MS, the
remaining 5 ml of acetonitrile/water extract was analyzed by high-
performance liquid chromatography-mass spectrometry (LC-MS). Here
the goal was particularly the detection and measurement of toxins
produced by the FTSC: beauvericin, enniatins, moniliformin and 2-
AOD-ol (2-amino-14,16-dimethyloctadecan-3-ol), a sphingolipid-like
metabolite. The analysis was performed with a Dionex Model U3000
liquid chromatography system (Thermo Scientific, Waltham,
Massachusetts), and a QExactive mass spectrometer (Thermo
Scientific). The LC-MS analysis was conducted in full scan positive
electrospray ionization (ESI) mode to observe a wide range of meta-
bolites and in negative ESI mode specifically for the detection of the
mycotoxin moniliformin. Positive mode mass spectrometry was done
with a gradient of 20–95% aqueous methanol over 5 min on a
Phenomenex Kinetex XB-C18 column (2.1 mm × 50 mm) at a flow rate
of 0.6 ml/min. For positive mode operation, LC mobile phases were
modified with 0.3% acetic acid to aid chromatographic separation and
MS detection. Negative mode mass spectrometry was done with a
gradient of 5–95% aqueous methanol over 5 min on a Waters XBridge
C18 column (4.8 mm × 150 mm) at a flow rate of 0.8 ml/min. For
negative mode operation, LC mobile phases were modified with 0.1%
formic acid to aid chromatographic separation and MS detection.

The limits of quantitation for the secondary metabolites evaluated
were: DON, 0.2 μg g−1; 2-AOD-ol, 10 μg g−1; beauvericin, 0.4 μg g−1;
enniatins, 0.15 μg g−1; and moniliformin, 10 ng g−1.

2.4. Statistical analysis

To determine whether FTSC percentages in fields or zones differed
from each other, 95% confidence intervals were calculated around the
FTSC percentages using the Goodman method for multinomial pro-
portions (Goodman, 1965; May and Johnson, 1997). This method
performs well when cell frequencies are not< 5 and categories are few.
It produces a nonsymmetrical interval with a restricted range within the
interval [0–1] or [0–100%]. For comparing the proportions of a given
species complex in different zones, the presence of non-overlapping
confidence intervals for two zones was used as statistical evidence
(α = 0.05) of a nonzero difference between those zones. SAS software
version 9.4 was used to run the analyses, with the code based on the
SAS macro program (blog ‘DOloop’, https://blogs.sas.com/content/
iml/2017/02/15/confidence-intervals-multinomial-proportions.html).

3. Results

From 59 fields in the three agronomic zones, a total of 2197 isolates
were identified to species (Table 1). The number of isolates identified
per field ranged from 9 to 66.
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3.1. Species identities

Across the entire sample of 2197 isolates, a large majority of isolates
(86.2%) were members of the trichothecene-producing FSAMSC
(Table 1). Out of the total, 1821 or 83% possessed the F. graminearum
15-ADON genotype. Only 48 NIV-genotype isolates were identified
among the F. graminearum isolates, and they were widely scattered,
with one or more NIV-type isolates found in 26 of the 59 fields. The per-
field percentage of NIV isolates ranged from 0 to 12%, with 12% found
in fields 14 (Bladen County) and 42 (Jones County) in the Coastal Plain.
Agronomic zones did not differ for NIV percentage, with the highest
rate being 3% of isolates in the Coastal Plain, which was not sig-
nificantly different from 1.6% in the Piedmont and 1.2% in the Tide-
water (P > .05). Just nine F. graminearum isolates of the 3-ADON
genotype (0.4% of the total sample) were found. Besides F. grami-
nearum, a small handful of isolates were identified as other species
belonging to the FSAMSC: five F. poae, three F. armeniacum, and two F.
sporotrichioides isolates.

Again across the entire sample, 249 isolates (11.3%) were classified
in the FTSC (Table 1). However, there was a wide range in FTSC fre-
quencies among fields. The high of 92.9% was found in field 43 in Jones
County, located in the Coastal Plain zone; this percentage was sig-
nificantly higher than those in all but two other fields (Fields 26 and 27,
also in the Coastal Plain, which had 58.8% and 63.2%, respectively).
Altogether, there were four fields in the 50–100% FTSC range, five in
the 30–49% range, five in the 20–29% range, and seven in the 10–19%
range (Table 1, Fig. 1). The remaining 38 fields had FTSC percentages
below 10%.

Many of the fields with relatively high FTSC percentages were
concentrated in a belt stretching across six counties in the central
Coastal Plain, between latitudes 35.0 and 35.5, where there were nine
fields with FTSC percentages of ≥20% (Fig. 2). There were also four
fields in the Piedmont with FTSC percentages of ≥20%, and one in the
Tidewater zone. When comparing zones, however, the FTSC percentage
was significantly higher in the Coastal Plain at 15.4% than in the
Piedmont (6.6%) or Tidewater (8.2%) (Table 1).

Of the 249 FTSC isolates, 122 were F. acuminatum, 59 were F. re-
ticulatum, 5 were F. avenaceum, 51 belonged to an unnamed species in

FUSARIUM MLST (FTSC11) that is closely related to F. avenaceum
(Moreira et al., 2020; O'Donnell et al., 2018), and 12 were classified
simply as FTSC because they did not share at least 99% similarity with
reference sequences in FUSARIUM MLST.

Out of the total of 2197 isolates, 48 belonged to the Fusarium fuji-
kuroi species complex, or FFSC (Aoki et al., 2014; O'Donnell et al.,
2015); of them, 45 were F. proliferatum, one was F. concentricum, and
two others were classified simply as FFSC. Per-field percentages were
usually< 10% FFSC, although one field (Field 30) had 28% F. pro-
liferatum (Table 1). Six isolates were classified as members of the Fu-
sarium incarnatum-equisetum species complex, or FIESC (O'Donnell
et al., 2015).

3.2. Mycotoxin content

The whole-spike samples had DON concentrations ranging from
0.77 to 152.78 μg g−1 (Table 2), as measured by GC-MS. The samples
had moniliformin (MON) concentrations ranging from 0.0 to
38.73 μg g−1, with most values being<1.0 μg g−1, as measured by LC-
MS. While no quantifiable levels of enniatins (ENNs) were detected in
most samples, a few samples did contain levels of 0.19 to 0.31 μg g−1 of
ENN B, ENN B1, or both. No other FTSC toxins (beauvericin, chlamy-
dosporol, ENN A, ENN A1, or 2-AOD-ol) were detected, and no bute-
nolide (an FGSC toxin) was detected.

The samples with the highest MON levels, i.e., concentrations above
3.0 μg g−1, came from fields in which at least 50% of isolates were
identified as members of the FTSC (Fig. 3). Although the set of fields
with ≥50% FTSC strains was small, within it the relationship of FTSC
percentage to MON was roughly linear. However, the sample from Field
27 with 63% FTSC isolates had a low MON concentration (0.56 μg g−1),
so a high FTSC percentage was apparently a necessary but not sufficient
condition for a relatively high MON level in these samples.

The highest DON levels, i.e., concentrations of 40 μg g−1 and above,
were found where FSAMSC percentage was 95–100%, although there
were also fields with FSAMSC percentages in that range that had lower
DON levels (Tables 1 and 2). The three fields with the highest MON
concentrations all had relatively low DON levels (4.2–6.3 μg g−1). This
was reasonable, given that those fields also had relatively high FTSC
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Fig. 2. Latitude and longitude of 59 North Carolina wheat fields sampled for FHB-symptomatic spikes in 2014, with marker diameter corresponding to the proportion
of spikes infected with isolates in the Fusarium tricinctum species complex.
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and low FSAMSC percentages (Table 1).

3.3. Previous crop

Although the previous crop was not identified at the time of sam-
pling the FHB-symptomatic wheat spikes, it was determined retro-
spectively for five fields with 0% FTSC and five fields with FTSC of
≥30% by contacting farm managers. The previous crops in the 0%
FTSC fields were soybeans (two fields) and cotton, tobacco, and maize
(one field each). The previous crops in the high-FTSC fields were

tobacco (two fields), soybeans (two fields), and either fescue or sudex, a
sorghum-sudangrass hybrid (one field).

4. Discussion

This study provides a detailed look at the distribution of FHB-
causing strains in commercial winter wheat crops at the level of a single
U.S. state. To our knowledge, this is the largest and most intensive
survey of Fusarium strains within an FHB-prone wheat area of its size.
The state utilizes crop rotations common to many eastern U.S. states, in

Table 2
Concentrations of deoxynivalenol (DON), moniliformin (MON), and total type B enniatins (ENNs) in FHB-symptomatic spike samples from 59 North Carolina wheat
fields in 2014.

Field County DON (ug g−1) MON (ug g−1) ENNs (ug g−1)a Field County DON (ug/g) MON (ug/g) ENNs (ug g−1)a

1 Pitt 0.77 0.24 – 31 Rowan 25.41 0.17 –
2 Washington 18.10 0.15 – 32 Rowan 9.85 0.24 –
3 Beaufort 8.17 0.14 0.25 33 Davie 4.88 0.29 –
4 Union 20.91 0.24 – 34 Davie 4.58 0.34 –
5 Lenoir 10.14 0.16 0.25 35 Davie 4.97 0.33 –
6 Lenoir 19.33 0.21 – 36 Davidson 58.52 0.95 –
7 Lenoir 18.12 0.19 0.55 37 Davidson 7.18 0.43 –
8 Washington 55.76 0.00 – 38 Craven 4.73 0.19 –
9 Washington 30.82 0.20 – 39 Craven 20.32 1.35 0.24

10 Beaufort 64.90 0.00 0.19 40 Craven 4.62 0.46 –
11 Columbus 3.91 0.04 – 41 Jones 13.37 0.21 –
12 Columbus 10.07 0.08 0.46 42 Jones 47.07 0.41 –
13 Columbus 12.80 0.69 – 43 Jones 4.61 38.73 0.43
14 Bladen 8.97 0.57 – 44 Wake 27.93 0.40 –
15 Bladen 10.25 0.33 – 45 Wake 6.38 0.49 –
16 Sampson 13.58 0.11 0.22 46 Stokes 8.51 0.09 –
17 Sampson 13.92 1.63 – 47 Forsyth 39.51 0.16 –
18 Sampson 18.03 0.17 – 48 Forsyth 152.78 0.20 –
19 Robeson 8.78 0.14 – 49 Chowan 17.77 0.10 –
20 Robeson 6.87 0.21 – 50 Chowan 8.07 0.09 –
21 Robeson 11.57 0.18 – 51 Chowan 20.69 1.38 0.19
22 Wayne 4.82 0.17 – 52 Pasquotank 8.26 0.88 0.19
23 Wayne 9.31 0.30 – 53 Pasquotank 10.02 0.83 –
24 Wayne 5.61 0.07 0.22 54 Pasquotank 2.61 0.14 –
25 Harnett 32.58 0.18 – 55 Perquimans 5.10 0.15 –
26 Harnett 4.16 21.55 0.31 56 Perquimans 30.00 0.48 –
27 Johnston 20.72 0.56 – 57 Perquimans 28.62 0.10 –
28 Johnston 12.97 0.23 – 58 Cleveland 6.33 3.69 –
29 Johnston 21.99 0.15 0.29 59 Cleveland 2.33 0.06 –
30 Rowan 2.09 0.18 –

a Sum of type B and type B1 enniatins; “–” indicates below limits of quantification.
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particular that of corn, soybeans and wheat. Overall, the present results
confirmed that F. graminearum was the dominant FHB-causing pathogen
in wheat at the scale of state. Unexpectedly, however, in some in-
dividual wheat fields within North Carolina there were sizable minority
populations of FTSC species, and in three fields those species con-
stituted the majority of the sample.

The results suggest it may be useful to begin taking these producers
of “emerging mycotoxins” into account in managing FHB in the U.S. It
seems unlikely the patchy dominance of FTSC FHB is confined to the
year 2014 or to North Carolina, as the state's agricultural production
system is reasonably stable over time, and its climate and crop rotation
patterns are similar to those in surrounding areas. In 2014, North
Carolina producers harvested a little over 311,600 ha of wheat,
315,600 ha of maize, and 700,000 ha of soybeans, while in the four
adjacent states, a total of between 489,500 and 1.2 million hectares of
each of those same crops was harvested that year (NASS, 2019). The
present study demonstrates that in this production environment, FHB-
causing species can vary by field even when fields are near each other,
and sampling must be on a fairly fine scale in order to detect wheat
fields where minority species are at higher frequencies.

The fact that the importance of FTSC strains in some small-grain
fields was not noticed before now is likely due to limited sampling, and
also to a focus on characterization of genetic and mycotoxin diversity
among isolates of the dominant FHB pathogen, F. graminearum, and
closely related species. It should be noted that the TRI3 and TRI12 PCR
assays, commonly used for chemotype prediction, are only appropriate
for characterization of F. graminearum and other members of FSAMSC-
1. While those primers reliably distinguish among strains with 15-
ADON, 3-ADON, or NIV chemotypes, they do not produce accurate
results for species outside FSAMSC-1. For example, spurious amplifi-
cation of non-target DNA from many of the non-FGSC isolates in this
study produced amplicons that were similar in size to the expected
amplicon from 3-ADON strains, which could lead to false conclusions if
interpreted in the absence of accurate species identifications. In addi-
tion, these primers were designed prior to the discovery of the NX toxin
type among F. graminearum and can result in the misidentification of NX
isolates as having the 3-ADON chemotype. MLGT provides for si-
multaneous identification of species and trichothecene type based on
direct interrogation of species or chemotype-specific SNPs genotypes,
and includes clade-specific probes for FSAMSC-1 and the FGSC, elim-
inating the potential issues of misinterpretation based on spurious
amplification of non-target DNA. The latest version of MLGT
(Garmendia et al., 2018) also includes probes providing for reliable
identification of NX isolates.

As expected, the percentages of NIV-producing F. graminearum
strains and those producing 3-ADON were very small. No field had a
high concentration of NIV producers, which indicates there is no reason
to routinely monitor NIV levels in winter wheat in this U.S. region, in
line with current practice. The scattered small percentages are con-
sistent with the results from the previous, much smaller survey
(Schmale et al., 2011).

What explains such wide variation in FTSC frequency in wheat
fields that lie in close proximity? One possible factor is localized
weather conditions, which may favor some FHB-causing strains over
others. For example, the timing of FHB-conducive conditions in relation
to wheat anthesis in certain fields may have favored F. acuminatum or
other members of the FTSC in relationship to F. graminearum.
Comparing the performance of F. graminearum, F. acuminatum and F.
avenaceum when individually infecting wheat spikes at different timings
during anthesis, Beccari et al. (2019) found that F. graminearum caused
greater and more rapid symptom development than the weaker pa-
thogens after all infection timings. But the F. graminearum:FTSC ratios
of biomass and secondary metabolites were higher from inoculations at
3 or 6 days after early anthesis (daa) than at 0 or 9 daa. Thus, perhaps
rain that results in spore release either at the start of wheat anthesis or
late in anthesis gives a relative advantage to FTSC strains in

competition with F. graminearum. It should be noted that the study by
Beccari et al. (2019) did not test co-occurrence within spikes, and was
in a controlled environment, so these dynamics remain to be tested in
field situations.

Another weather factor that may affect competition among fusaria
is temperature. In the UK and Europe, where multiple FHB-causing
pathogens including F. graminearum, F. poae, and F. avenaceum are often
present in wheat fields, F. graminearum was associated with warmer and
F. avenaceum with cooler conditions (Xu et al., 2008). It is possible that
in the present study, fields with relatively high percentages of FTSC
strains experienced cooler micro-climatic conditions than other fields
during key stages of infection and disease development.

Previous crop is another possible explanation for differences among
fields. There is some evidence that previous crop can influence the re-
lative frequencies of FGSC chemotypes (Pasquali and Migheli, 2014). As
is discussed below, moniliformin contamination is thought to be more
prevalent where maize is extensively cultivated (Peltonen et al., 2010).
In the present study, no pattern among previous crops was apparent in
the subset of sampled fields that generated either low or high FTSC
percentages. Perhaps a larger dataset on previous crop would have
detected tendencies that were not evident from this subset, but due to
the difficulty of locating farm managers with relevant information
several years later, this would have been extremely difficult to recreate
in hindsight.

FTSC percentages were on average about twice as high in the
Coastal Plain as in the Piedmont or Tidewater zones, and it is unclear
what factors account for this. The Coastal Plain generally possesses a
sandy loam soil, in contrast to the clay and mineral organic soils of the
other two regions, respectively. However, no data are available to as-
sess if FTSC species are favored by lighter, sandier soils.

While it has not been identified as an important agent of FHB in the
USA, F. acuminatum has been implicated in soilborne diseases of field
crops. For example, F. acuminatum and Cochliobolus sativus were con-
sidered primary agents in the root rot complex of dryland winter wheat
in Colorado and Wyoming (Hill and Fernandez, 1983). F. acuminatum
was also among the top three Fusarium species isolated from soybean
roots in Iowa (Diaz-Arias et al., 2013) and southern Alberta, Canada
(Zhou et al., 2018). Possibly the large-scale soybean production in the
eastern and central U.S. provides a source of F. acuminatum inoculum
for FHB. Then, in a given field, competitive dynamics among species
complexes may be influenced by environmental factors such as
moisture, temperature, and the frequencies of other micro-organisms.

What are the implications of the present findings for mycotoxin
management? Generally, the main toxin of concern in U.S. small grains
is DON, and the current results were consistent with that. However, the
study also demonstrated the potential for occurrence in mid-Atlantic
wheat crops of what are known as “emerging mycotoxins” produced by
FTSC strains F. avenaceum and F. acuminatum, in particular mon-
iliformin and the depsipeptides beauvericin and enniatins. In the U.S.,
there is no federal advisory level for these mycotoxins, and their impact
on consumer health remains unclear.

Moniliformin (MON), which was detected and quantified in this
study, is a mycotoxin found in maize, wheat, barley and oats; it often
co-occurs with other Fusarium toxins (Knutsen et al., 2018). It has been
detected in Canadian samples of wheat, oats and rye, with the highest
concentrations generally in durum wheat (Clear et al., 2005; Gräfenhan
et al., 2013; Tittlemier et al., 2013), and also in small-grain cereals in
Austria, Finland, Norway and Poland (e.g., (Filek and Lindner, 1996;
Jestoi et al., 2004; Sharman et al., 1991; Uhlig et al., 2004). While the
cytotoxicity of MON is relatively low, its acute toxicity is comparable to
that of the most toxic Fusarium trichothecenes such as T-2 toxin, and
particularly affects the heart in various animals (Hallas-Møller et al.,
2016; Peltonen et al., 2010). Adverse effects from chronic MON con-
sumption include mortality and reduced body weight gain in swine and
poultry, reduced weight gain and body weight in mink and farmed fish,
and myocardial lesions and reduced egg production in poultry (Knutsen
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et al., 2018; Manning and Abbas, 2012; Peltonen et al., 2010). Due to a
lack of data, the European Food Safety Authority (EFSA) Panel on
Contaminants in the Food Chain could not establish a tolerable daily
MON intake for animals or humans (Knutsen et al., 2018). Overall, the
EFSA Panel concluded that current feeding practices create a low or
even negligible risk to farm and companion animals, and there is likely
a low risk to human health from chronic consumption of levels of MON
currently found in grain products. However, the EFSA Panel also noted
the very limited quantity of available dose-response data, especially on
cardiotoxicity, and recommended a 90-day toxicity study be conducted
with rats.

When MON is detected in small-grain cereals, enniatins (ENNs) and
beauvericin (BEA) are often also detected. F. acuminatum and F. ave-
naceum strains have various patterns of mycotoxin production, de-
pending on geographic region, climate, substrate of origin, and test
substrate (Jestoi et al., 2004; Logrieco et al., 1992). They may produce
MON, ENNs, BEA, and other mycotoxins in different combinations.
MON and ENNs have co-occurred in other surveys of small-grain sam-
ples where FTSC strains were found, e.g., in Finland (Jestoi et al., 2004;
Tittlemier et al., 2013; Yli-Mattila et al., 2006). In the present study,
low concentrations of type B ENNs were detected in some samples,
while no quantifiable levels of type A ENNs or BEA were found. The
possible co-occurrence of ENNs with MON in U.S. wheat fields merits
further investigation.

The present results demonstrate the possibility of mycotoxin mix-
tures in US wheat fields. There is growing interest in the effects of
mycotoxin mixtures, as toxic effects can occur when multiple toxins are
present even though no single mycotoxin is above its allowable ceiling
(Silva et al., 2002). MON may be of concern due to interactive effects
when it is combined with other Fusarium mycotoxins such as fumonisin
B1 or DON, even when the levels of each individual toxin do not exceed
known thresholds (Fremy et al., 2019). Moreover, MON can be pro-
duced by nearly 40 Fusarium species (Peltonen et al., 2010) as well as
Penicillium melanoconidium, a post-harvest contaminant of stored cereals
(Hallas-Møller et al., 2016). Also, MON is commonly found in other
crops grown in rotation with wheat, especially in maize (Gutema et al.,
2000; Peltonen et al., 2010), where it is produced by F. subglutinans,
particularly in warmer areas, or F. proliferatum (Desjardins et al., 2006;
Peltonen et al., 2010). Thus, MON contamination in feed made from
multiple cereal grains (e.g., maize and wheat) could exceed a tolerable
ceiling even if the MON level in each component feedstock was lower.

There are few published observations of FTSC mycotoxin con-
centrations in commercial North American grain crops. In one report,
Canadian durum wheat samples infected with both F. graminearum and
F. avenaceum contained a mean of 3.8 μg g−1 of depsipeptides, con-
centrations of which were up to 10 times higher than those of MON or
DON (Tittlemier et al., 2013). Durum grain samples containing higher
concentrations of both MON and depsipeptides were also graded cor-
respondingly lower, indicating that Fusarium-damaged kernels (FDK),
which are known to correlate with DON, also correlated with the F.
avenaceum-generated mycotoxins. Clearly, more sampling would need
to take place in North Carolina wheat fields to clarify what if any levels
of contamination with MON or depsipeptides might be occurring.

A limitation of this study was the selection of a single isolate per
spike, which did not allow the detection of multiple species or strains
that may have co-occurred within a spike. Given the large scale of the
effort and resource limitations, it was judged of greater interest to
sample more extensively within fields rather than intensively within
spikes. In future, it would be helpful to determine the degree to which
individual symptomatic wheat spikes are colonized by FHB-causing
strains of multiple species. It is noteworthy that high MON concentra-
tions were only observed in symptomatic spike samples with ≥50%
FTSC percentages and relatively low DON levels. This suggests, al-
though does not demonstrate, that there may be limited or highly un-
equal F. graminearum-FTSC co-occurrence in individual spikes. Little is
known about co-infection of individual wheat spikes by multiple

Fusarium species.
A study of two wheat fields in the Netherlands found that spike

residues and grain in each field were both colonized at harvest by
multiple fusaria (F. avenaceum, F. culmorum, F. graminearum, and F.
poae) as well as Microdochium nivale (Köhl et al., 2007), although spikes
were pooled and not assayed individually. In the Dutch experiment, all
the species were also found in leaves and stems, and their relative
proportions varied across the seasons of a full year. This reminds us that
relative inoculum availability of different fusaria at wheat flowering
reflects the outcome of saprophytic competition on wheat, maize, and
other stubble.

What implications do these results have for breeding and deploy-
ment of resistant cultivars? It has been suggested, although not de-
monstrated, that resistance effective against one FHB-causing pathogen
may be effective against others, whether within the FGSC (Pasquali and
Migheli, 2014) or within the FSAMSC when cultivar responses to F.
culmorum and F. graminearum were compared (van Eeuwijk et al.,
1995). Moving beyond the trichothecene producers, there is little in-
formation on whether resistance to FGSC strains is equally effective
against strains from other species complexes, such as those of the FTSC.
Thus, it remains to be determined whether a breeding nursery that
utilizes natural inoculum in a high-FTSC location would obtain the
same resistance rankings of genotypes as a nursery in a high-FGSC lo-
cation.

At a practical level, F. graminearum and trichothecene mycotoxins
remain the dominant concern in managing FHB in North Carolina. The
evidence indicates that NIV producing strains are highly infrequent,
and monitoring NIV in grain crops is not warranted. However, FTSC
species can be significant causal agents of FHB epidemics in this en-
vironment. Coastal Plain small grain fields appear to have a somewhat
greater likelihood than those in other zones of generating higher per-
centages of FTSC-infected wheat spikes. The patchy distribution of
FTSC species suggests a need to better understand the factors that
sometimes allow them to outcompete trichothecene producers, as well
as the distribution and importance of their mycotoxins in cereal crops.
A clearer picture of what drives the FHB-causing species balance toward
the FTSC may be useful in improving host resistance and/or manage-
ment practices so as to minimize both sets of pathogens.
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