Using Maker-Assisted Selection to Improve Hard Winter Wheat FHB Resistance

Guihua Bai
USDA Central Small Grain Genotyping Laboratory, Hard Winter Wheat Genetics Research Unit, Manhattan, KS
FHB in KS:
- 10% acreage annually, eastern quarter
- 40-50% acreage sporadically, central KS
- Yield loss: 1.9% (6 mi bushels) in 2008

FHB in OK:
- Acreage: 2008 1-2%; 2009 >20%
- Yield loss: 3%, up to 25% in eastern districts

Source: US. Wheat Association

Major US. Wheat Growing Regions
HWW FHB in greenhouse experiments

Percentage of HWW accessions

0-10
10.01-20
20.01-30
30.01-40
40.01-50
50.01-60
60.01-70
70.01-80
80.01-90
90.01-100

PSS (%)
Status of FHB resistance in US HWW

- HWW cultivars are mainly MS to S

- *Fhb1* has been used in breeding for more than 10 years, to date *Fhb1* presents only in a few elite breeding lines, not in any cultivar

- Several local HWW were identified with FHB resistance, but QTL have not been determined
FHB related research in my lab

- Identify ‘diagnostic’ markers for *Fhb1*
- Develop markers for other QTL from Chinese and US resistant sources
- Develop high-throughput markers using next-generation-sequencing (GBS, GBMAS, Genotyping by multiple amplicon sequencing)
- Transfer *Fhb1* into US HWW backgrounds using marker-assisted backcross
Develop ‘diagnostic’ markers for *Fhb1* through fine mapping
Develop 12 markers in the *Fhb1* region based on reference sequence

Screen a diversity panel

Potential ‘diagnostic’ markers

Fine mapping define *Fhb1* region using SSR, 92K SNP and GBS

NIL population

Marker screen 5000 Bc7F2 for recombination in *Fhb1* region

Ning7840/Clark*7

Differentially expressed genes

RNA-Seq
Fhb1 region marker haplotypes assayed in an diversity panel (166 acc.)

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>cfb6067</th>
<th>SNP319</th>
<th>umn10</th>
<th>cfb6059</th>
<th>FHB1-STS1</th>
<th>FHB1-STS2</th>
<th>FHB1-STS4</th>
<th>cfb6057</th>
<th>cfb6056</th>
<th>cfb6055</th>
<th>STS256</th>
<th>cfb6078</th>
<th>Represent Var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hap1</td>
<td>293</td>
<td>G</td>
<td>247</td>
<td>240</td>
<td>other</td>
<td>237</td>
<td>332</td>
<td>273</td>
<td>317</td>
<td>225</td>
<td>243</td>
<td>208</td>
<td>Chinese Spring</td>
</tr>
<tr>
<td>Hap2</td>
<td>293</td>
<td>G</td>
<td>255</td>
<td>238</td>
<td>other</td>
<td>237</td>
<td>332</td>
<td>273</td>
<td>317</td>
<td>224</td>
<td>244</td>
<td>null</td>
<td>Dahuangpl</td>
</tr>
<tr>
<td>Hap3</td>
<td>290</td>
<td>G</td>
<td>255</td>
<td>244</td>
<td>other</td>
<td>237</td>
<td>332</td>
<td>279</td>
<td>317</td>
<td>225</td>
<td>243</td>
<td>208</td>
<td>Clark</td>
</tr>
<tr>
<td>Hap4</td>
<td>293</td>
<td>A</td>
<td>258</td>
<td>null</td>
<td>other</td>
<td>246</td>
<td>302</td>
<td>null</td>
<td>224</td>
<td>250</td>
<td>205</td>
<td>ND2419</td>
<td></td>
</tr>
<tr>
<td>Hap5</td>
<td>null</td>
<td>A</td>
<td>258</td>
<td>null</td>
<td>null</td>
<td>220</td>
<td>302</td>
<td>null</td>
<td>225</td>
<td>250</td>
<td>208</td>
<td>Sumai 3</td>
<td></td>
</tr>
</tbody>
</table>

PSS(%)

- **Fhb1 marker haplotypes**

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>2</th>
<th>5</th>
<th>71</th>
<th>16</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hap1</td>
<td>79.0</td>
<td>80.0</td>
<td>55.0</td>
<td>70.0</td>
<td>27.0</td>
</tr>
<tr>
<td>Hap2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hap3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hap4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hap5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FHB1-STS1 for *Fhb1*

FHB1-R

FHB1-S
Mean PSS for two groups in the diversity panel contrasting in FHB1-STS1 alleles

![Bar chart showing mean PSS for two FHB1-STS1 alleles: FHB1-STS1-other with PSS of 94% and FHB1-STS1-220 with PSS of 27%]
Meta-analysis of FHB resistance QTL in Chinese wheat landraces
FHB resistant Chinese landraces

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>PSS (%, greenhouse)</th>
<th>PSS (%, field)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ning7840</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Wangshuibai</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Huangcandou (HCD)</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Haiyanzhong (HYZ)</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Huangfangzhu (HFZ)</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Baisanyuehuang (BSYH)</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>
5 Chinese landraces/Wheaton or Jagger

F_{6-8} RILs

FHB phenotyping

GBS/SSR

QTL mapping for each pop

Consensus map

Meta QTL analysis

Convert GBS to KASP-SNP and GBMAS for MAS
Genotyping-by-sequencing

- **gDNA**
 - RE1
 - RE2

 \[\text{restriction with 2 enzymes (RE)}\]

 - wanted
 - wanted

 \[\text{adapter ligation} \]

 - 5'
 - barcode adapter
 - barcode
 - RE1 site
 - RE2 site
 - common adapter
 - 3'

 \[\text{amplification} \]

 - Ion A primer
 - ion P1 primer binds to Ion Sphere™

 \[\text{emulsion PCR (pooled)} \]

 - PGM™ Sequencing

 \[\text{alignment of reads, SNP calling} \]
6232 SNPs were called with 20% missing data

~5000 SNPs were mapped to 36 linkage groups

Average marker density was 0.755cM per marker
QTL in HYZ using a GBS map

<table>
<thead>
<tr>
<th>Locus</th>
<th>Flanking markers</th>
<th>Combined mean</th>
<th>LOD</th>
<th>R² %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5A</td>
<td>GBS3127~Xbarc316</td>
<td>6.0</td>
<td></td>
<td>9.4</td>
</tr>
<tr>
<td>2B</td>
<td>GBS1711~GBS5561</td>
<td>5.0</td>
<td></td>
<td>7.6</td>
</tr>
<tr>
<td>6B</td>
<td>GBS0576~GBS0208</td>
<td>5.3</td>
<td></td>
<td>8.5</td>
</tr>
<tr>
<td>7D</td>
<td>GBS0983~Xwmc121</td>
<td>2.9</td>
<td></td>
<td>4.8</td>
</tr>
<tr>
<td>2D</td>
<td>GBS5276~Xcfd51</td>
<td>3.9</td>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td>4D</td>
<td>Xwmc52~GBS4813</td>
<td>4.1</td>
<td></td>
<td>6.2</td>
</tr>
<tr>
<td>6D</td>
<td>GBS0984~GBS5458</td>
<td>3.4</td>
<td></td>
<td>5.0</td>
</tr>
</tbody>
</table>
Consensus map for chromosome 3BS
Meta-QTLs on 3BS
Meta-QTL on 3AS
Meta-QTLs on 2D
Meta-QTLs on 3D and 4D
Summary

- Many important QTL reported to date can be identified in Chinese landraces

- *Fhb1* is the QTL with the largest effect in most Chinese resistance landraces, but not in HYZ

- HYZ lacks *Fhb1* and its resistance is conditioned by seven minor QTL, suggesting accumulation of multiple minor QTL also can achieve a high level of resistance

- QTL on 3AS, 3BS(2), 3D, 2D and 4D detected in multiple populations are more stable QTL for breeding

- GBS-SNP were found for most of these QTL and conversion of them to KASP and high-throughput GBMAS markers is in progress
Marker-assisted backcross to transfer \textit{Fhb1} into HWW
Fhb1 X HWW

BC1F1

MAS-BC

BC2F1

MAS

BC2F2

MAS

BC2F3 GH FHB test

BC2F4 field FHB test

Germplasm release
Transfer *Fhb1* to Wesley, Trego and Harding

- *Fhb1* donors: Sumai 3 and its soft wheat derivatives
- Recurrent parents: Wesley, Trego, Harding
- ~100 Bc2F4-5 lines per cross tested in Tri-state breeding nurseries
WesleyFhb1 lines and Wesley in field (2012)
WesleyFhb1 lines and Wesley in field (2013)
WesleyFhb1 and Wesley in greenhouse
PSS for *Fhb1* in three HWW

<table>
<thead>
<tr>
<th>Line</th>
<th>GH PSS</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>262(ND2928/Wesley*2)F3/WesleyF4</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>267(ND2928/Wesley*2)F3/WesleyF4</td>
<td>0.090</td>
<td></td>
</tr>
<tr>
<td>568(ND2928/Wesley*2)F3/WesleyF4</td>
<td>0.192</td>
<td>0.12</td>
</tr>
<tr>
<td>Wesley</td>
<td>0.584</td>
<td>79.5%</td>
</tr>
<tr>
<td>277(ND2710/Trego*2F3//TregoF4</td>
<td>0.324</td>
<td></td>
</tr>
<tr>
<td>219(ND2710/Trego*2F3//TregoF4</td>
<td>0.253</td>
<td></td>
</tr>
<tr>
<td>27(ND2710/Trego*2F3//TregoF4</td>
<td>0.203</td>
<td>0.26</td>
</tr>
<tr>
<td>Trego</td>
<td>0.722</td>
<td>63.7%</td>
</tr>
<tr>
<td>167(Harding*2/Sumai3)F3Harding/F4</td>
<td>0.534</td>
<td></td>
</tr>
<tr>
<td>61(Harding*2/Sumai3)F3Harding/F4</td>
<td>0.580</td>
<td></td>
</tr>
<tr>
<td>31(Harding*2/Sumai3)F3Harding/F4</td>
<td>0.350</td>
<td>0.49</td>
</tr>
<tr>
<td>Harding</td>
<td>0.507</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Transfer *Fhb1* from Ning7840 to Overland, Overlay and Jagger
FHB severity and DON content between parents and their Fhb1 lines in Overland, Overley and Jagger backgrounds

<table>
<thead>
<tr>
<th></th>
<th>GH PSS (%) (3 seasons)</th>
<th>Field PSS (%) (2 years)</th>
<th>FDK (%) (2 years)</th>
<th>DON (ppm) (2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overland-Fhb1 lines (49)</td>
<td>21.26</td>
<td>33.08</td>
<td>20.61</td>
<td>14.44</td>
</tr>
<tr>
<td>Overland</td>
<td>42.00</td>
<td>46.00</td>
<td>41.00</td>
<td>32.20</td>
</tr>
<tr>
<td>FHB reduction due to Fhb1 (%)</td>
<td>49.37</td>
<td>28.09</td>
<td>49.74</td>
<td>55.16</td>
</tr>
<tr>
<td>Overley-Fhb1 lines (20)</td>
<td>46.31</td>
<td>28.94</td>
<td>17.20</td>
<td>10.94</td>
</tr>
<tr>
<td>Overley</td>
<td>95.00</td>
<td>77.00</td>
<td>68.00</td>
<td>27.60</td>
</tr>
<tr>
<td>FHB reduction due to Fhb1 (%)</td>
<td>51.25</td>
<td>62.42</td>
<td>74.70</td>
<td>60.36</td>
</tr>
<tr>
<td>Jagger-Fhb1 lines (59)</td>
<td>40.39</td>
<td>19.44</td>
<td>11.93</td>
<td>10.48</td>
</tr>
<tr>
<td>Jagger</td>
<td>83.00</td>
<td>58.00</td>
<td>31.00</td>
<td>15.10</td>
</tr>
<tr>
<td>FHB reduction due to Fhb1 (%)</td>
<td>51.33</td>
<td>66.49</td>
<td>61.50</td>
<td>30.57</td>
</tr>
</tbody>
</table>
Transfer *Fhb1* from Wesley-Fhb1 to 11 HWW from 5 States

- 11 locally adapted recurrent parents:
 - ND: Decade, Jerry,
 - NE: NE01481, NE6607,
 - KS: Everest, KS061406LN-47,
 - SD: SD08080, Lyman,
 - OK: Garrison, Ruby Lee, OK06617-Rht

- Markers: Xumn10 and Xsnp8
Progress

Completed projects:

- \textit{Fhb1} carrying NILs are available for Wesley, Harding, Trego, Overland, Overley and Jagger

5 state MAB project in progress:

- DH: 1st set sent to AZ for increase and 2nd set DH production in progressing
- 11 Bc_2F_4 pop. were planted for field FHB evaluation this fall and greenhouse FHB evaluation is in progress
Summary

Fhb1 significantly improves resistance in most HWW backgrounds but FHB resistance levels varied with resistance levels of recurrent parents, thus avoiding use of highly susceptible cultivars as recurrent parents have a higher chance to select highly resistant lines.

Although many backcross progenies show slightly lower yield than recurrent parents, some *Fhb1* lines have similar yield as recurrent parents.

Marker selected *Fhb1* lines still show different levels of resistance in each population, phenotypic selection will be useful to improve the level of resistance in selected lines.

WesleyFhb1 can be useful *Fhb1* donor for HWW.
GBS is a cost effective system for QTL mapping and SNP discovery

Single SNP marker may not be diagnostic for a QTL when a large set of germplasm are screened. Thus several SNP (haplotype) may be needed to tag a QTL

GBMAS using Ion Proton can be a good system for high throughput screening of multiplex SNP for MAS in breeding
Acknowledgements

HWW-CAP & other collaborators:
P. Stephen Baenziger, William Berzonsky, Alan Fritz, Frans Marais, Brett F. Carver, Bill Bockus, Yanhong Dong

Lab staff:
Jin Cai, Zhengqi Su, Amy Bernardo, Paul St. Amand, Dadong Zhang, Nosheen Fatima
Thank You for Your Attention!