

RNA-Based Plant Protection

Host-Induced Gene Silencing to Engineer Resistance to FHB

Karl-Heinz Kogel Phytopathologie, Gießen

RNA-Based Plant Protection

Is there an agronomic potential for application ?

The Plant Pathogen Fusarium graminearum

Macroconidia

Toxin syndrome

Head blight disease

Necrotrophic growth

Jansen et al. 2005 PNAS 102

Fusarium species threaten harvest and food safety

Fusarium Head Blight

Toxicity

Zearalenon LD₅₀ 7 mg kg⁻¹ (body weight, mouse oral)

 Copper treatments LD50

 500 - 2000 mg kg⁻¹
 (mouse oral)

 660
 mg kg⁻¹
 (birds)

 0.052 mg l⁻¹
 (fish)

Modern pesticide LD₅₀ >5000 mg kg⁻¹ (mouse oral)

RNA-based crop protection exploits RNA interference

Different mechanisms of RNA interference (gene silencing)

Post-transcriptional gene silencing

Andrew Z. Fire and Craig C. Mello (Noble Prize 2006)

Host-Induced Gene Silencing

oversimplified model

*Lethal target gene siRNA: DICER-released small interfering RNA; ds: double stranded RNA; N: nucleus

Proof-of-Concept

dsRNA-GFP plants inoculated with §GFP-tagged Fusarium graminearum

dsGFP-RNA

excitation 395 nm

visible light

*Golden Promise inoculated with Fg-GFP

[§]GFP = Green Fluorescence Protein

Host-Induced Gene Silencing

Selection of the right <u>target gene</u> is a critical success factor of HIGS applications

The target is a critical success factor for HIGS applications

The inhibitory dsRNA CYP3RNA

Clone sequences of CYP51A (294nt)

Clone sequences of CYP51B (220nt)

CAGCAAGTTTGACGAGTCCCTGGCCGCTCTCTACCACGACCTCGATATGGGCTTCACCCCCATCAACTTCATGCTTCACTGGGCCCCTCTCCCCTGGAACCGTA AGCGCGACCACGCCCAGCGCACTGTTGCCAAGATCTACATGGACACTATCAAGGAGCGCCGCGCCAAGGGCAACAACGAATCCGAGCATGACATGAAGCA CCTTATGAACTCT

Clone sequences of CYP51C (238nt)

ATTGGAAGCACCGTACAATATGGCATCGACCCGTACGCTTTTTTCTTCGACTGCAGAGATAAATACGGCGACTGCTTTACCTTTATTCTCCTTGGCAAATCAACGA CTGTCTTTCTTGGTCCCAAGGGCAATGACTTTATCCTCAACGGCAAACACGCCGATCTCAACGCCGAGGACGTTTATGGGAAACTTACCACGCCCGTGTTTGGTG AGGAGGTTGTTTATGACTGCTCCAATG

*CYP3RNA

dsRNA: CYP3RNA

*Synthesis of dsRNA for in vitro studies was performed using BLOCK-iT RNAi TOPO Transcription Kit (Invitrogen)

In planta experiment

Vector for plant transformation

CYP3RNA expression inhibits infection

Arabidopsis

Koch et al. 2013, PNAS 110

CYP3RNA expression inhibits infection

Barley

Wild type

transgenic lines expressing CYP3RNA

transgenic line expressing empty vector

wt = cv. Golden Promise

Strong inhibition of Fusarium Head Blight

Barley

Control

CYP3RNA

Strong silencing of fungal CYP51 expression in planta

Normalized with fungal ß-tubulin

Off-target analysis

Table S1. Prediction of CYP3RNA off-target transcripts

Organism	Query name*			
	Gene	Description	All hits [†]	Efficient hits [‡]
Fusarium graminearum	FGSG_01000 [§]	CYP51B	200	46
	FGSG_04092 [§]	CYP51A	274	126
	FGSG_11024 [§]	CYP51C	218	95
Arabidopsis thaliana	AT2G17330	CYP51A1	0	0
	AT1G11680	CYP51A2	0	0
Hordeum vulgare	Published database (1)		0	0
Hyaloperonospora arabidopsidis	Published database (2)		0	0
Rhizophagus irregularis	Published database (3)		0	0
Piriformospora indica	Published database (4)		0	0
Homo sapiens	Published database (5)		0	0
Fusarium cerealis isolate NRRL13721	JN416614¶	CYP51A	190	83
Fusarium austroamericanum isolate NRRL28718	JN416607¶	CYP51A	117	50
Fusarium vorosii isolate 67C1	JN416608¶	CYP51A	116	50
Fusarium acaciae-mearnsii isolate NRRL26752	JN416603¶	CYP51A	94	43

*Simulations were run using Si-Fi software (v3.1) for predicting off-targets prediction (http://labtools.ipk-gatersleben.de).

⁺Number of 21-mer siRNA sequences with perfect match to the query sequence.

‡Number of 21-mer siRNA sequences with perfect match to the query sequence that fulfill additional criteria for efficient RNAi (See Si-Fi software).

What type of inhibitory RNA is transferred ?

ILV, intraluminal vesicles, MVB, multivesicular bodies

Outlook – HIGS amenable to plant breeding ?

No example has been found so far showing that a crop produces small RNAs to target its pathogen/pest

However: Botrytis cinerea targets plant defense genes by small RNAs

From: Baulcombe 2013 Comments on Weiberg et al. 2013

> It is too early to speculate whether breeding approaches on these plant targets could be a realistic strategy.

Acknowledgments

Dr. Aline Koch

Dr. Jafar Imani transgenic barley

RNAi mutants

M.Sc. Eltayb Abdellatef

Technical assistance

Excellent effects of HIGS against the grain aphid *Sitobion avenae**

Eltayb Abdellatef

*Collaboration with A. Vilcinskas and T. Will, Inst. f. Entomology, JLU Gießen

Silencing of Salivary Sheath Protein SHP in *S. avenae*

- Aphids feed on sap suck from sieve tube of vascular plants. During this process aphids secrete gel saliva that forms a sheath to enclose the stylet.
- The stylet sheath is built up by different proteins, though SHP seem essential because it forms the structural backbone of the sheath.

Tjallingii W F J. Exp. Bot. 2006;57:739-745

Reduced expression of *shp* in aphids fed on transgenic barley

Reproduction rate, growth development, and survival rate was negatively affected

Silencing of *shp* is transmitted transgenerationally

